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Structural VARs

▶ Consider the structural VAR(p) model:

B0yt =

p∑
ℓ=1

Bℓyt−ℓ + wt ,

where yt = (y1t , · · · , yNt)′ is a N × 1 vector, wt is white noise with
zero mean and covariance matrix Σw .

▶ The model is structural in the sense that wt are mutually
uncorrelated and have clear interpretations in terms of an underlying
economic model.

▶ WLOG, we normalize the covariance matrix of the structural shock
as Σw = IN .
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▶ Clearly, the model has a reduced-form representation:

yt = B−1
0 B1︸ ︷︷ ︸
Π1

yt−1 + · · ·+ B−1
0 Bp︸ ︷︷ ︸
Πp

yt−p + ut︸︷︷︸
B−1
0 wt

,

with E (utu
′
t) = Σu = B−1

0 B−1′

0 .

▶ The structural model is not identified.

▶ Recall the reduced-form IRF:

Θh =
h∑

j=1

ΠjΘh−j , h = 0, 1, 2, · · · ,H

where Θ0 = IN and Πℓ = 0 for ℓ > p.

▶ Then, the structural IRF can be defined as

ΘVAR
h = ΘhB

−1
0 (1)



A Premier on Theory of Identification

▶ We rely heavily on Rubio-Ramirez et al. 2010, RES.

▶ Let m = Np and define B ′
+ = [B1 · · · Bp], (B0,B+) are parameters

of the structural model, (Π,Σu) are parameters of the reduced-form
model

▶ Define PS as the set of all structural parameters, PR as the set of all
reduced form parameters

▶ Define g : PS → PR be g(B0,B+) = (B+B
−1
0 , (B0B

′
0)

−1), the
relationship between the structural and reduced form parameters
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Examples of identifying restrictions

▶ On the contemporaneous coefficients:

f (B0,B+) = B0

▶ Short run restrictions on the IRFs:

f (B0,B+) = [Θ′
0 Θ′

1 · · ·Θ′
H ]

′

▶ Combination of short run and long run restrictions:

f (B0,B+) = [Θ′
0 Θ′

∞]′
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Identification

▶ We say that (B0,B+) and (B̃0, B̃+) are observationally equivalent if
and only if they imply the same distribution of yt , 1 ⩽ t ⩽ T .

Definition
A parameter point (B0,B+) is globally identified if and if there is no
other parameter point that is observationally equivalent.

Definition
A parameter point (B0,B+) is locally identified if and if there is an
open neighbourhood about (B0,B+) containing no other observationally
equivalent parameter point.
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▶ In linear Gaussian case, observationally equivalent implies that
(B0,B+) and (B̃0, B̃+) have the same reduced-form representation
(Π,Σ).

▶ The structural of g : g(B0,B+) = (B+B
−1
0 , (B0B

′
0)

−1) shows that

(B0,B+) and (B̃0, B̃+) have the same reduced-form representation if
and only if there is an orthogonal matrix P such that B0 = B̃0P and
B+ = B̃+P.



Theory of identification

▶ Define Qj for j = 1, ...,N with rank(Qj) = qj such that

Qj f (A0,A+)ej = 0

where ej is the jth column of IN . Wlog, we assume that q =
∑

qj
and q1 ⩾ q2 · · · ⩾ qN .

▶ Define the set of normalized structure parameters as N:
(B0D,B+D) ∈ V for diagonal D, we specify the set of restricted
parameters as

R =
{
(B0,B+) ∈ U

⋂
V
∣∣∣Qj f (B0,B+)ej = 0, 1 ⩽ j ⩽ N

}
(2)
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▶ We focus on exact identified SVAR.

▶ We say that SVAR is exactly identified if and only if for almost all
(Π,Σ), there exists a unique (B0,B+) ∈ R such that
g(B0,B+) = (Π,Σ).

▶ We have the following theorem:

Theorem
Consider an SVAR with restrictions represented by R. The SVAR is
exactly identified if and only if for almost every structural parameter
point (B0,B+) ∈ U, there exists a unique P ∈ O(N) such that
(B0P,B+P) ∈ R.



▶ It can be shown that, if f (B0,B+) = B0, there exists a unique
(B0,B+) ∈ R such that g(B0,B+) = (Π,Σ), then B0 must be lower
triangular.

▶ Lower triangular B0 is often called recursive (Cholesky)
identification.



Example: Global market for Crude Oil

▶ The example is taken from Kilian, 2009 AER.

▶ Let yt = (∆prodt , reat , rpoilt)
′, where ∆prodt denotes the percent

change in world crude oil production, reat is a measuring global real
economic activity, and rpoilt is the log of the real price of oil.

▶ The data is monthly.

▶ The model is recursively identified.
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u∆prodt
t

ureatt

urpoiltt

 =

b110 0 0
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b310 b320 b330

w∆prodt
t

w reat
t

w rpoilt
t


▶ The identification assumptions imply:

(i) A vertical short-run oil supply curve;
(ii) A (downward-sloping) short-run demand curve



Inference on structural IRFs

▶ In practice, Πj , j = 1, ..., p, B0 are unknown and need to be
estimated.

▶ We know that, asymptotic distributions of LS estimators take the
following form:

√
T

(
β̂ − β

vech(Σ̂u)− vech(Σu)

)
d−→ N

(
0,

[
Σβ̂ 0

0 Σσ̂

])
▶ In the special case of Gaussian i .i .d . innovations, it can be shown

that it is given by

Σσ = 2D+
N (Σu ⊗ Σu)(D

+
N )

′,

where D+
N = (D ′

NDN)
−1D ′

N and DN is the duplication matrix such
that

DNvech(Σu) = vec(Σu).

SVARs Yu Bai (Bocconi University)



▶ The structural IRFs are given by

ΘVAR
h = ΘhB

−1
0 ,

which is a smooth function of g(β, vech(Σu)).

▶ We can apply Delta method to obtain the asymptotic distributions
of structural IRF estimates:

√
T
(
g(β̂, σ̂)− g(β, σ̂)

) d−→ N
(
0,

∂g

∂β′Σβ̂

∂g ′

∂β
+

∂g

∂σ′Σσ̂
∂g ′

∂σ

)



Finite-order VAR models

▶ Lutkepohl (1990 RESTAT) derives the exact formulas of the
quantities defined above, under the assumption that yt is generated
by a stationary VAR with known lag length p and white noise errors:

√
Tvec(Θ̂VAR

h −ΘVAR
h )

d→ N(0,ChΣβC
′
h + C hΣσC

′
h) (3)

where

C0 = 0,Ch = (B−1
0 ⊗ IN)Gh, with Gh =

∂vec(Φh)

∂β′

C h = (IN ⊗ Φh)H, with H =
∂vec(B−1

0 )

∂σ′
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▶ The exact formula of the score is

Gh =
h−1∑
m=0

J(B ′)h−1−m ⊗ Φm

H = L′N{LN(IN2 + KNN)(B
−1
0 ⊗ IN)L

′
N}−1

Φm = JΠmJ ′

where KNN is the commutation matrix such that for any N × N
matrix G , KNNvec(G ) = vec(G ′); Lm is the m(m + 1)/2×m2

elimination matrix, such that for any m ×m matrix F ,
vech(F ) = Lmvec(F ); and J = [IN 0 · · · 0] is of dimension N×Np.



Bootstrap intervals for structural IRFs

▶ The closed form solution derived above relies on the VAR errors
being i .i .d . Gaussian.

▶ The formulas are also inconvenient to use in practice.

▶ In practice, the confidence intervals are often obtained by bootstrap
methods.
▶ ”The central idea underlying the bootstrap approach is that we

approximate the distribution of the statistics of interest based on its
sample analogue, allowing us to mimic the underlying sampling
experiment.”
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Advantages of bootstrap methods

▶ They allow inference about smooth and differentiable
g(β, vech(Σu)) even when closed-form solutions are not available or
inconvenient to use.

▶ It remains asymptotically valid under weaker conditions, not required
errors to be i .i .d . Gaussian.

▶ Suitably constructed bootstrap confidence intervals tend to be more
accurate in small samples than asymptotic approximations.
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Standard residual-based recursive-design bootstrap

▶ There are several bootstrap methods on the table and they must be
used properly (have asymptotic justification).

▶ Here, we focus on the first study of the use of bootstrap methods
for structural IRFs, by Runkle, 1987 JBES.

▶ This is a residual-based recursive-design bootstrap method.
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Residual-based recursive-design bootstrap: How it works?

▶ Let the model be VAR(p) with known p:

yt = c +

p∑
ℓ=1

Πℓyt−ℓ + ut , ut
i.i.d.∼ F

where F is generally unknown.

▶ Then, we can generate bootstrap DGP by

y∗
t = ĉ +

p∑
ℓ=1

Π̂ℓy
∗
t−ℓ + u∗t

where [ĉ , Π̂1, · · · , Π̂p] denote the LS estimator and u∗t
i.i.d.∼ F̂ .
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▶ We need an estimate for F̂ .

▶ If we know that ut
i.i.d.∼ N(0,Σu), then u∗t

i.i.d.∼ N(0, Σ̂u).

▶ We can also do it in a nonparametric way. Let {ût}Tt=1 be the initial
regression residuals, then we obtain u∗t by sampling with
replacement from it.

▶ The MC results in Kilian, 1998b, ER show that there is no noticeable
efficiency gain from imposing parametric assumptions even when it
is true, but imposing the wrong parametric assumptions tends to
undermine the accuracy of bootstrap inference.

https://www.tandfonline.com/doi/abs/10.1080/07474939808800401


▶ The initial conditions (y∗
−p+1, · · · , y∗

0 )
′ can be sampled at random

with replacement as a block of p consecutive vector valued
observations from the observed data {yt}Tt=−p+1.

▶ If the lag order p is unknown, we can also estimate it in each
bootstrap replications.

▶ The number of bootstrap replications required may be larger if we
want to obtain confidence intervals precisely.

▶ After obtaining the implies bootstrap estimates θ̂∗ik,h, percentile
interval can be reported:

[θ̂∗ik,h,γ/2, θ̂
∗
ik,h,1−γ/2]

where γ is the quantile.



Local Projections

Jorda 2005 AER’s critiques:

▶ VAR based approach is optimal if (1) represents the true DGP.
However,
▶ VARs represent a global approximation to the DGP: best, linear,

one-step ahead predictors.

▶ IRFs in (??) are computed recursively. Misspecification errors are
compounded with the horizon.

▶ Standard errors for impulse responses from VARs are complicated
and difficult to compute.

SVARs Yu Bai (Bocconi University)

https://www.aeaweb.org/articlesid=10.1257/0002828053828518


Local Projections

▶ Recall that, IRFs are defined as

IR(t, h, di ) = Et(yt+s |ut = di )− Et(yt+s |ut = 0) h = 0, 1, 2, · · ·

▶ The key idea of local projection is that, multi-step forecasts,
Et(yt+s |−), can also be obtained with direct forecasting models,
specifically

yt+h = f0+F1yt+F2yt−1+· · ·+Fqyt−q+1+et+h, h = 1, · · · ,H (4)

▶ Then, we have

IR(t, h, di ) = ΦLP = F1di , h = 1, · · · ,H (5)

which we name (5) as the impulse responses from the local(-linear)
projections.
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▶ Lag length q in (4) needs not to be common in each horizon h.

▶ Choice of functional forms does not need to be linear as in (4). We
can introduce polynomial terms on yt :

yt+h = F1yt + Q1y
2
t + F2yt−1 + · · ·+ Fqyt−q+1 + et+h

▶ The corresponding structural impulse responses are therefore

ΘLP
h = IR(t, h, di )B

−1
0 , h = 0, 1, · · · ,H (6)



Relation to VARs

Theorem
If yt is a VAR(p) process then its h-step predictive regression is a
predictive VAR(p) with ut a MA(h − 1) process and F1 = Θh = IRF(h).
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Proof of the theorem

Since yt is a VAR(p) process,

yt+h = Π1yt+h−1 +Π2yt+h−2 + · · ·+Πpyt+h−p + et .

We then substitute out the first lag. We find

yt+h = Π1(Π1yt+h−2 +Π2yt+h−3 + · · ·+Πpyt+h−p−1 + et−1)

+ Π2yt+h−2 + · · ·+Πpyt+h−p + et

= (Π1Π1 +Π2)yt+h−2 + (Π1Π2 +Π3)yt+h−3

+ · · ·+ΠpΠpyt+h−p−1 +Π1et−1 + et .

We continue making substitutions. After the first substitution, the error
term is MA(1). Then, after h − 1 iteration, the error has an MA(h − 1)
structure. The second part of the theorem follows immediately from the
definition of the IRF.
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Local Projections: Estimation and inference

▶ Let yj , j = H, · · · , 0,−1, · · · ,−q, be the (T − q−H)×N matrix of
stacked observations for yt+j , X = (y−1 · · · y−q) is of dimension
(T − q − H)× Nq, define the projection matrix
MX = I − X (X ′X )−1X ′, by F-W-L Theorem, we have

F̂1 =
(
y ′
hMX y0

)(
y ′
0MX y0

)−1
(7)

▶ Then, by Proposition 2 in Jorda (2009, RESTAT), under some
regularity conditions, we have

√
T (vec(F̂1)− vec(F1))

d→ N(0,ΩF ) (8)

where

ΩF = p lim
( 1

T
y ′
0MX y0

)−1

⊗ Σe (9)

and Σe can be consistently estimated by HAC.
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Local Projections: Comments

▶ Starting with Jorda 2005 AER, local projections have become an
increasingly widespread alternative econometric approach.

▶ Advantages (Jorda 2005 AER):
▶ IRFs may be estimated directly by linear LS regressions, simplifying

the analysis.
▶ Inference for the impulse responses is straightforward and does not

require appealing to the delta method.
▶ Local projection estimates of the structural impulse responses are

more robust to model misspecification than conventional VAR
estimates.
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Local Projections: Comments

▶ Repeat the predictive regression here:

yt+h = F1yt + F2yt−1 + · · ·+ Fqyt−q+1 + et+h, h = 1, · · · ,H

Then, for H horizons, it requires to estimate HqN2 parameters in
the mean equation, but only HN2 parameters are of direct interests.

▶ For VAR analysis, only pN2 parameters need to be estimated. The
number of parameters to be estimated does not increase with the
impulse response horizon.

▶ If VAR model is misspecified because there are omitted variables,
local projection estimator suffers from the same omitted variable
problem.
▶ For example, Alessi and Kerssenfischer (2019, JAE) finds that

puzzling effects of monetary policy shocks from VAR are mainly
caused by missing information, not by identification scheme.
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Local Projections: Comments

▶ It is also not clear whether LP is more robust to model
misspecification than conventional VAR.

▶ As we have seen, MA(h − 1) structure of the error terms require the
assumption that true DGP is VAR(p).
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Local Projections: Comments

▶ It is correct to say that inference for F̂1 can be directly obtained by
(7).

▶ However, as economists, we are interested in ΘLP
h defined in (6).

B−1
0 is unknown and has to be estimated.

▶ Thus, inference still requires Delta method. Asymptotic variance has
to be adjusted:

(B−1′

0 ⊗ IN)ΩF (B
−1
0 ⊗ IN) + G hΣσG h (10)

where

G h = (IN ⊗ ΦLP
h )

∂vec(B−1
0 )

∂σ′

▶ This means that the second term of asymptotic variance is exactly
the same as in standard VAR.
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Local Projections: Comments

▶ On nonlinearity:
▶ Accurate nonlinear approximation may require large number of

terms. It is also not clear how to obtain an external estimate of the
structural impact multiplier matrix in that case.

▶ It might be correct that LP delivers more precise reduced form IRFs
and is more prone to nonlinearity. But, in forecasting literature,
Marcellino et al. 2006 JoE and Pesaran et al. 2011 JoE find that, if
(V)AR model includes enough lags, iterated forecast by (V)AR
models have better forecast accuracy than direct forecast.

▶ On inference:
▶ It is possible to implement bootstrap procedure in LP context, but

the procedures introduced above cannot be used. See, Kilian and
Kim, 2011 RESTAT and references therein for more details.
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Local Projections: Recent advances

▶ Plagborg-Moller and Wolf, 2021 ECTA prove that local projections
and Vector Autoregressions estimate the same impulse responses in
population.

▶ Montiel Olea and Plagborg-Moller 2021 ECTA provide some new
results on the robustness of LPs.

▶ Herbst and Johannsen, 2020 investigate the finite sample bias of
LPs.

▶ Check here for a more comprehensive simulation study: Li et al.
2021.
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Monte-Carlo Study

▶ The DGP is taken from Kilian and Kim, 2011 RESTAT.

▶ Consider the following bivariate VAR(1), t = 1, · · · ,T :

yt =

(
B11 0
0.5 0.5

)
yt−1 + et , et

i.i.d.∼ N

((
0
0

)
,

(
1 0.3
0.3 1

))
where B11 ∈ {0.5, 0.9, 0.95} and T = 100 with M = 1000
replications.

▶ Lag length is chosen by AIC. For local projection, lag length is
selected at each horizon h = 1, · · · ,H.

▶ We compare both coverage rates and length of the 95% confidence
interval for the shock of 1st variable to the 2nd variable.
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Monte-Carlo Study
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Monte-Carlo Study

▶ The coverage rates of VAR drop quickly with increasing horizon
(more when series are persistent).

▶ Local projection does not deteriorate steadily as horizon increases,
but its overall coverage rates decline with increasing B11.

▶ The better coverage rates from local projection is mainly due to
wider confidence interval.
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Forecast error variance decomposition
▶ For a VAR process, the h-step ahead forecast error is

yt+h − yt+h|t =
h−1∑
i=0

Πi
1ut+h−i =

h−1∑
i=0

Θiwt+h−i

where ut = B−1
0 wt .

▶ Then, MSE at horizon h is given by

MSE(h) =
h−1∑
i=0

Πi
1Σu(Π

i
1)

′

=
h−1∑
i=0

ΘiΣwΘ
′
i

=
h−1∑
i=0

ΘiΘ
′
i
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▶ Let θkj,h be the kj th element of Θh. Then, the contribution of shock
j to MSE of ykt , k = 1, ....N, at horizon h, is given by

MSEk
j (h) = θ2kj,0 + · · ·+ θ2kj,h−1

and the total MSE of ykt , at horizon h, is

MSEk(h) =
N∑
j=1

MSEk
j (h) =

N∑
j=1

(θ2kj,0 + · · ·+ θ2kj,h−1)

▶ Dividing both sides above by MSEk(h), we have the forecast error
variance decomposition:

1 =
MSEk

1(h)

MSEk(h)
+ · · ·+ MSEk

N(h)

MSEk(h)



Historical decompositions
▶ Sometimes we are interested instead in quantifying how much a

given structural shock explains of the historically observed
fluctuations in the VAR variables.

▶ Consider a weakly stationary vector process yt :

yt =
t−1∑
s=0

Θswt−s +
∞∑
s=t

Θswt−s

▶ Given the fact that MA coefficients die out, we can drop out the
second term:

yt ≈
∞∑
s=t

Θswt−s

and denote this approximation by

ŷt =
∞∑
s=t

Θswt−s
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▶ Then, jth shock to variable i can be computed as

ŷ
(j)
it =

t−1∑
i=0

θij,iwj,t−i

▶ In practice, both MA coefficients and structural shocks are replaced
by estimated counterparts.

▶ The value for ŷit is obtained as the sums

ŷit =
N∑
j=1

ŷ
(j)
it

▶ It is worthy to mention that number of approximations needed
generally depends on the persistence of VAR variables.



An empirical application

▶ Kilian, 2009 AER: a 3-variable structural VAR model of the global
crude oil market

▶ Variables used: yt = (∆prodt , reat , rpoilt)
′, where ∆prodt denotes

the percent change in world crude oil production, reat is a measuring
global real economic activity, and rpoilt is the log of the real price of
oil

▶ The sample period is 1973:01-2007:12.

▶ The model is recursively identified.

▶ Lag length is set to 24. For LP, lag length is selected based on AIC
criteria.
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Summary of main findings

▶ The effect of an unanticipated aggregate demand expansion on
global real economic activity is very persistent and highly significant.

▶ Unanticipated oil market–specific demand increases have an
immediate, large, and persistent positive effect on the real price of
oil that is highly statistically significant.

▶ Unanticipated oil supply disruptions have only a small positive effect
on the real price of oil.

▶ Oil supply shocks historically have made comparatively small
contributions to the real price of oil. The biggest contributions are
due to the aggregate demand shock and the oil market–specific
demand shock.
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