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Time series

Some distinguishing features of time series data:
▶ (Chronological) ordering of data matters
▶ Dependence across time
▶ Dependence on time (seasonal effects, trends)

A time series data set is a realization of a stochastic process.
▶ This process is often dependent and may be nonstationary.
▶ Repeated sampling from the population of all its possible realizations induces

randomness of estimators and other time series statistics.
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Examples of time series regression models

Static models:
yt = β0 + β1zt + ut , t = 1, 2, · · · ,T .

Implication: a change in z at time t is believed to have an immediate effect on y , so
that ∆yt = β1∆zt when ∆ut = 0.

Example

(Static Phillips curve). The static Phillips curve is given by

inft = β0 + β1unemt + ut ,

where inft is the annual inflation rate and unemt is the annual unemployment rate.
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Examples of time series regression models

Finite distributed lag (FDL) models:

yt = α0 +

q∑
ℓ=0

δqzt−q + ut , t = 1, 2, · · · ,T .

We allow one (or more) variables to affect y with lags.

We are often interested in the long-run multiplier or the long-run propensity
(LRP) when using these type of models.
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A short example

q = 2

z increases permanently to c + 1 at time t

To focus on the ceteris paribus effect of z on y , we set the error term in each time
period to zero. Then,

yt−1 = α0 + δ0c + δ1c + δ2c

yt = α0 + δ0(c + 1) + δ1c + δ2c

yt+1 = α0 + δ0(c + 1) + δ1(c + 1) + δ2c

yt+2 = α0 + δ0(c + 1) + δ1(c + 1) + δ2(c + 1),

and so on.

With the permanent increase in z , after one period, y has increased by δ0 + δ1, and
after two periods, y has increased by δ0 + δ1 + δ2.

This shows that the sum of the coefficients on current and lagged z , δ0 + δ1 + δ2, is
the long-run change in y given a permanent increase in z .
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Examples of time series regression models

For the FDL model with q lags, we can define the LRP accordingly by

LRP = δ0 + δ1 + · · ·+ δq.

Example

Consider the model

gfrt = α0 + δ0pet + δ1pet−1 + δ2pet−2 + ut ,

where gfrt is the general fertility rate and pet is the real dollar value of the personal tax
exemption. δ0 measures the immediate change in fertility due to a one dollar increase in
pe. If pe permanently increases by one dollar, then, after two years, gfr will have
changed by δ0 + δ1 + δ2, and no further change afterwards.
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Something more...

Can have multiple explanatory variables in both static models and FDL models.

Needs to have a propert treatment on the initial observations, BUT
▶ Do not worry, as regression packages automatically keep track of these things.
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Finite Sample Properties of OLS under Classical Assumptions



Unbiasedness of OLS

Assumption TS.1: Linear in parameters

The stochastic process {(Xt , yt)t} follows the linear model

yt = β0 + X′
tβ + ut ,

where (ut)t is the sequence of errors or disturbances.

Assumption TS.2: No perfect collinearity

In the sample (and therefore in the underlying time series process), no independent
variable is constant nor a perfect linear combination of the others.
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Unbiasedness of OLS

Assumption TS.3: Zero conditional mean

For each t, the expected value of the error ut , given the explanatory variables for all time
periods X, is zero:

E (ut |X) = 0.

No random sampling in TS context

Assumption TS.3 implies that ut must be uncorrelated with xsj when s = t and even
s ̸= t.

Going further questions 1

In the FDL model yt = α0 + δ0zt + δ1zt−1 + ut , what do we need to assume about the
sequence {z0, z1, · · · , zT} in order for Assumption TS.3 to hold?
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A short example

Consider the model
mrdrtet = β0 + β1polpct + ut ,

where mrdrtet is a city’s murder rate and polpct is police officers per capita.

Suppose that Assumption TS.3 is satisfied:
▶ It may be reasonable to assume that ut is uncorrelated with polpct and even with past

values of polpct .
▶ But suppose that the city adjusts the size of its police force based on past values of

the murder rate.

This means that, say, polpct+1 might be correlated with ut (because a higher ut
leads to a higher mrdrtet).

If this is the case, Assumption TS.3 is generally violated.
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Unbiasedness of OLS

Assumptions TS. 1-3 are enough to guarantee the unbiasedness of OLS.

Theorem

Under Assumptions TS.1, TS.2, and TS.3, the OLS estimators are unbiased conditional

on X, and therefore unconditionally as well when the expectations exist: E
(
β̂nj

)
= βj ,

where j = 0, 1, · · · , k.

The proof is essentially the same as that for cross-sectional data, so we omit it.
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The Variances of the OLS Estimators and the Gauss-Markov Theorem

Assumption TS.4: Homoskedasticity

Conditional on X, the variance of ut is the same for all t: V (ut |X) = V(ut) = σ2,
t = 1, 2, · · · ,T .

Assumption TS.5: No Serial Correlation

Conditional on X, the errors in two different time periods are uncorrelated:
corr (utus |X) = 0, for all t ̸= s.

No such Assumption TS.5 in the cross-sectional setting due to random sampling.
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Example

Consider an equation for determining three-month T-bill rates i3t based on the inflation
rate inft and the federal deficit as a percentage of gross domestic product deft :

i3t = β0 + β1inft + β2deft + ut .

Policy regime changes are known to affect the variability of interest rates.

If interest rates are unexpectedly high for this period, then they are likely to be
above average (for the given levels of inflation and deficits) for the next period.

Thus, Assumptions TS. 4-5 are unlikely to be satisfied in this example.



The Variances of the OLS Estimators and the Gauss-Markov Theorem

Theorem: OLS Sampling Variances

Under the time series Gauss-Markov Assumptions TS.1 through TS.5, the variance of β̂nj ,
conditional on X, is

V
(
β̂nj |X

)
=

σ2

SSTj

(
1− R2

j

) , j = 1, 2, · · · , k,

where SSTj is the total sum of squares of xtj and R2
j is the R-squared from the regression

of xj on the other independent variables.
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The Variances of the OLS Estimators and the Gauss-Markov Theorem

Theorem: Unbiased estimation of σ2

Under Assumptions TS.1 through TS.5, the estimator

σ̂2 =
SSR

df
,

is an unbiased estimator of σ2, where df = T − k − 1.

Theorem: Gauss-Markov Theorem

Under Assumptions TS.1 through TS.5, the OLS estimators are the best linear unbiased
estimators conditional on X.
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”Best” implies that among all linear estimators, β̂n has the smallest variance.

This implies that the matrix

Var
(
β̃n|X

)
− Var

(
β̂n|X

)
is p.s.d.

OLS yields the smallest variance. In particular,

Var
(
β̂nj |X

)
≤ Var

(
β̃nj |X

)
,

for any other linear, unbiased estimator of βj .



Inference under the Classical Linear Model Assumptions

Assumption TS.6: Normality

The errors ut are independent of X and are independently and identically distributed as
N (0, σ2).

Theorem: Normal sampling distribution

Under Assumptions TS.1 through TS.6, the CLM assumptions for time series, the OLS
estimators are normally distributed, conditional on X. Further, under the null hypothesis,
each t-statistic has a t distribution, and each F -statistic has an F distribution. The usual
construction of confidence intervals is also valid.
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Since
β̂n = β +

(
X′X

)−1 (
X′u

)
,

we have (with Assumption TS.6)

β̂n|X ∼ N
(
β, σ2 (X′X

)−1
)
.

The hypothesis testing of the null
H0 : βj = 0

can be based on the following t-statistic

β̂j

se
(
β̂nj

) ∼ tn−k−1.

The joint null
H0 : Rβ = 0

can also be based on the following F -statistic

(SSRr − SSRur ) /q

SSRur/ (n − k − 1)
∼ F (q, n − k − 1).



Inference under the Classical Linear Model Assumptions

If Assumptions TS.1 - TS.6 are satisfied, everything we have learned about
estimation and inference for cross-sectional regressions applies directly to time series
regressions.

Restrictive as they may sound? Of course!

Nevertheless, the CLM framework is a good starting point for many applications.
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Functional form, dummy variables, and index numbers



Functional form

All of the functional forms we learned about in earlier chapters can be used in time
series regressions.

The most important of these is the natural logarithm: time series regressions with
constant percentage effects appear often in applied work.

Example

Consider a simple model
log yt = β0 + β1dt + ut ,

where dt is a dummy variable. Simple algebra gives

β1 = log

(
y1t
y0t

)
= log

{
1 +

y1t − y0t
y0t

}
= log {1 + ∆%yp} ≈ ∆%yp.

The exact percentage change is given by

y1t − y0t
y0t

= exp (β1)− 1.
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Dummy variables

Binary explanatory variables are the key component in what is called an event study.

A simple version of an equation used for event studies is

R f
t = β0 + β1R

m
t + β2dt + ut ,

where
▶ R f

t : stock return for firm f during period t
▶ Rm

t : market return (usually computed for a broad stock market index)
▶ dt : equals to 1 if the event occurred

Example

Consider an airline firm, dt might denote whether the airline experienced a publicized
accident or near accident during time t.

Going further questions 2

Suppose that we would like to quantify the impact of releasing earning report on the
stock market performance for firm f . How would you design such an event study?
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Index number

The index of industrial production (IIP) is a measure of production across a broad
range of industries, and, as such, its magnitude in a particular year has no
quantitative meaning.

In order to interpret the magnitude of the IIP, we must know the base period and
the base value.

To change the base period for any index number, we can use the formula

newindext = 100(oldindext/oldindexnewbase).

Example

With base year 1987, the IIP in 1992 is 107.7; if we change the base year to 1982, the IIP
in 1992 becomes 100(107.7/81.9) = 131.5 (because the IIP in 1982 was 81.9).
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Nominal and real economic variables

Another important example of an index number is a price index, such as the CPI.

The price indexes are necessary for turning a time series measured in nominal dollars
(or current dollars) into real dollars (or constant dollars).

Example

Suppose that average weekly hours worked are related to the real wage as

log(hours) = β0 + β1 log(w/p) + u.

If we compare with specification using nominal wage

log(hours) = β0 + β1 log(w) + β2 log(p) + u,

this implies that economic theory imposes a restriction β2 = −β1 on the above model.
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Trends and seasonality



Trending time series models

Linear trend:
yt = α0 + α1t + et , t = 1, 2, · · ·

Exponential trend:
log yt = α0 + α1t + et , t = 1, 2, · · ·

▶ How do we interpret β1?

∆ log(yt) ≈ (yt − yt−1) /yt−1 = β1,

where the final equality is achieved by setting ∆et = 0.

Quadratic trend:
yt = α0 + α1t + α2t

2 + et , t = 1, 2, · · · ,

▶ The approximate slope (holding et is fixed) is

∆yt

∆t
≈ α1 + 2α2t.
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Using Trending Variables in Regression Analysis

Suppose that yt has some trending pattern and consider the following model
specification:

yt = β0 + β1xt1 + β2xt2 + ut .

The trending pattern is now absorbed into the error term ut , making Assumptions
TS. 4-5 violated.

OLS estimates β̂1T and β̂2T are likely to be biased.

It is thus recommended to add a trending term if variables are themselves trending:

yt = β0 + β1xt1 + β2xt2 + β3t + ut .

Going further questions 3

Explain how to interpret β1 and β2 in the above specification based on F-W-L theorem.
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Computing R-Squared When the Dependent Variable Is Trending

Recall the definition of R2:
R2 = 1−

(
σ̂2
u/σ̂

2
y

)
,

where
▶ σ̂2

u : an unbiased estimator of error variance;
▶ σ̂2

y = SST/(T − 1), SST =
∑T

t=1 (yt − y)2.

However, when yt is trending, σ̂
2
y is no longer an unbiased or consistent estimator of

σ2
y .

We can first obtain residuals ÿt from the regression of yt on t. Then, we compute
R2 based on

R2 = 1− σ̂2
u∑T

t=1 ÿ
2
t

.

Reminder: In computing the R-squared form of an F -statistic for testing multiple
hypotheses, we just use the usual R-squareds without any detrending.
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Seasonality

Time series may exhibit seasonality.

Example

▶ Housing starts are generally higher in June than in January due to weather.

▶ Retail sales in the fourth quarter are typically higher than in the previous three quarters
because of the Christmas holiday.

Series that do display seasonal patterns are often seasonally adjusted before they
are reported for public use.
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Seasonality

A simple method for dealing with seasonality is to add seasonal dummies in
regression models:

yt = β0 + δ1febt + δ2mart + · · ·+ δ11dect + x′tβ + ut ,

where febt , mart , · · · , and dect are monthly dummy variables.

No seasonality implies that δ1 = δ2 = · · · = δ11 = 0, which can be easily tested via
an F -test.

Going further questions 4

In the above equation, what is the intercept for March? Explain why seasonal dummy
variables satisfy the strict exogeneity assumption.

Can also deseasonalizing the data as we do for detrending.
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Problems

Problem 1

Decide if you agree or disagree with each of the following statements and give a brief
explanation of your decision:

(i) Like cross-sectional observations, we can assume that most time series observations
are independently distributed.

(ii) The OLS estimator in a time series regression is unbiased under the first three
Gauss-Markov assumptions.

(iii) A trending variable cannot be used as the dependent variable in multiple regression
analysis.

(iv) Seasonality is not an issue when using annual time series observations.
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Problems

Problem 2

We say that the explanatory variables xt = (xt1, · · · , xtk) are said to be sequentially
exogenous (sometimes called weakly exogenous) if

E (ut |xt , xt−1, · · · , x1) = 0, t = 1, 2, · · · ,

so that the errors are unpredictable given current and all past values of the explanatory
variables.

(i) Explain why sequential exogeneity is implied by strict exogeneity.

(ii) Explain why contemporaneous exogeneity is implied by sequential exogeneity.
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Assignment

Problems: 2,5

Computer Exercises: C2,C9
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