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Stationary Time Series

Stationary Stochastic Process

The stochastic process {xt : t = 1, 2, · · · } is stationary if for every collection of time
indices 1 ≤ t1 < t2 < · · · < tm, the joint distribution of (xt1 , xt2 , · · · , xtm ) is the same as
the joint distribution of (xt1+h, xt2+h, · · · , xtm+h) for all integers h ≥ 1.

Covariance Stationary Process

A stochastic process {xt : t = 1, 2, · · · } with a finite second moment E(x2
t ) < ∞ is

covariance stationary if

(i) E(xt) is constant;
(ii) V(xt) is constant;
(iii) for any t, h ≥ 1, Cov (xt , xt+h) depends only on h and not on t.
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Stationary Time Series

A stationary process with finite second moments is covariance stationary.

The converse is not true.

Example

Let Zt
i.i.d.∼ N(0, 1) and define

Xt =

{
Zt if t is even

(Z 2
t−1 − 1)/

√
2, if t is odd,

It is straightforward to verify that (xt)t is covariance stationary. However, (xt)t can not
be stationary as when t is even it is Normally distributed but it follows a χ2 distribution
when t is odd.

However, if (xt)t is a covariance stationary Gaussian process then (xt)t is stationary.
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Stationary Time Series

Sometimes, to emphasize that stationarity is a stronger requirement than covariance
stationarity, the former is referred to as strict stationarity.

Because strict stationarity simplifies the statements of some of our subsequent
assumptions, “stationarity” for us will always mean the strict form.

Exercise

Suppose that {yt , t = 1, 2, · · · } is generated by yt = δ0 + δ1t + et , where et is an i .i .d .
sequence with mean zero and variance σ2

e .

1 Is (yt)t covariance stationary?

2 Is (yt − E(yt))t covariance stationary?
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Weakly Dependent Time Series

The exact definition requires some technical notions on characterising dependence,
but we do not need that.

For our purposes, an intuitive notion of the meaning of weak dependence is
sufficient.

We say that a time series {xt : t = 1, 2, · · · } is weakly dependent if
Corr (xt , xt+h) ̸= 0 for a fixed h but Corr (xt , xt+h) → 0 as h → ∞.

This asymptotically independence is enough for WLLN and CLT to hold in the time
series context.
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Example: MA(1) process

xt = et + α1et−1, t = 1, 2, · · · ,

where

(et)t is an i .i .d . sequence with zero mean and variance σ2
e .

Let us calculate some quantities:

V(xt) = (1 + α2
1)σ

2
e

Cov(xt , xt+1) = α1V(et) = α1σ
2
e

Cov(xt , xt+h) = 0, for any h > 1

Corr(xt , xt+1) =
α1

1+α2
1
, which is peaked when α1 = 1
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Example: AR(1) process

yt = ρ1yt−1 + et , t = 1, 2, · · · ,

where

(et)t is an i .i .d . sequence with zero mean and variance σ2
e ;

y0 satisfies E(y0) = 0.

The crucial assumption for weak dependence of an AR(1) process is the stability
condition |ρ1| < 1.

E(yt) = E(yt−1) ⇒ E(yt) = 0

V(yt) = ρ21V(yt−1) + σ2
e ⇒ σ2

y = σ2
e/
(
1− ρ21

)
Cov(yt , yt+h) = ρh1σ

2
y

Corr(yt , yt+h) = ρh1
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By repeated substitution, we have

yt+h = ρ1yt+h−1 + et+h = ρ1 (ρ1yt+h−2 + et+h−1) + et+h

= ρ21yt+h−2 + ρ1et+h−1 + et+h = · · ·

= ρh1yt +
h∑

ℓ=1

ρh−ℓ
1 et+ℓ

So that

Cov(yt , yt+h) = E(ytyt+h) = ρh1E(y 2
t ) +

h∑
ℓ=1

ρh−ℓ
1 E (ytet+ℓ)

= ρh1E(y 2
t ) = ρh1σ

2
y .

Something about trend-stationary process and weakly dependence...



Consistency and asymptotic Normality

Definition

Let Wn be an estimator of θ based on a sample Y1,Y2, · · · ,Yn of size n. Then, Wn is a
consistent estimator of θ if for every ε > 0,

P (|Wn − θ| > ε) → 0, (1)

as n → ∞.

Definition

Let (Zn)n be a sequence of random variables, such that for all numbers z ,

P (Zn ≤ z) −→ Φ(z), (2)

as n → ∞, where Φ(z) is the standard normal cumulative distribution function. Then, Zn

is said to have an asymptotic standard normal distribution.
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Consistency of OLS

Since

β̂n − β =

(
n∑

t=1

xtx
′
t

)−1( n∑
t=1

xtut

)
,

consistency requires

1

n

n∑
t=1

xtx
′
t

p−→ E
(
x1x

′
1

)
, (3)

1

n

n∑
t=1

xtut
p−→ E (x1u1) = 0, (4)

where E (x1x
′
1) has to be p.d .

We will not go through the proofs of (3) and (4), but rather state the assumptions
which guarantee them.
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Assumption TS.1’ Linearity and Weak Dependence

We assume the model is exactly as in Assumption TS.1, but now we add the assumption
that {(xt , yt), t = 1, 2, · · · } is stationary and weakly dependent. In particular, the LLN
and the CLT can be applied to sample averages.

Assumption TS.2’ No Perfect Collinearity

Same as Assumption TS.2.

Assumption TS.3’ Zero Conditional Mean

The explanatory variables xt are contemporaneously exogenous: E (ut |xt) = 0.



Consistency of OLS

Theorem (Consistency of OLS)

Under Assumption TS.1’, Assumption TS.2’, and Assumption TS.3’, the OLS estimators
are consistent: plimn→∞ β̂n = β.

Going deeper...

Something on predictive regressions..
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Example (Static model)

Consider the model
yt = α+ z′tβ + ut .

Under weak dependence, the condition sufficient for consistency of OLS is

E (ut |zt) = 0.

This rules out omitted variable bias and misspecification of functional forms. However,
ut−1 and zt can be correlated (feedback).

Example (Finite distributed lag model)

Consider the model

yt = α+

p∑
ℓ=0

δℓzt−ℓ + ut .

A very natural assumption is that the expected value of ut , given current and all past
values of z , is zero:

E (ut |zt , zt−1, zt−2, · · · ) = 0.

This means that, once zt , zt−1, · · · , zt−p no further lags of z affect
E (ut |zt , zt−1, zt−2, · · · ). If this were not true, we would put further lags into the
equation. As in the previous example, Assumption TS.3’ does not rule out feedback from
y to future values of z .



Example (AR(1) model)

Consider the model
yt = β0 + β1yt−1 + ut ,

where the error ut has a zero expected value, given all past values of y :

E (ut |yt−1, yt−2, · · · ) = 0.

This implies that
E (yt |yt−1, yt−2, · · · ) = β0 + β1yt−1.

Thus, once y lagged one period has been controlled for, no further lags of y affect the
expected value of yt .
The Assumption TS.3’ is clearly satisfied. What about Assumption TS.3? (left as an
exercise)



Some simulation exercises

We generate data according to

yt = α+ βXt + ut , t = 1, 2, · · · , n,

where ut ∼ N (0, 1).

Two experiments:
(i) α = 1, β = 2, Xt ∼ N (0, 1);
(ii) α = 0, β = 0.9, Xt = yt−1.

Calculate the empirical distribution of β̂n − β based on 1000 replications.
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(i)
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(ii)
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Asymptotic Normality of OLS

We first state two additional assumptions:

Assumption TS.4’ Homoskedasticity

The errors are contemporaneously homoskedastic, that is, V (ut |xt) = σ2.

Assumption TS.5’ No Serial Correlation

For all t ̸= s, cov (utus |xt , xs) = 0.
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Asymptotic Normality of OLS

Then, we have

√
n
(
β̂n − β

)
=

(
1

n

n∑
t=1

xtx
′
t

)−1(
1√
n

n∑
t=1

xtut

)
d−→ N

(
0, σ2 (E(x1x′1))−1

)
.

We now summarize the results in the following theorem.

Theorem (Asymptotic Normality of OLS)

Under Assumption TS.1’ through Assumption TS.5’, the OLS estimators are
asymptotically normally distributed. Further, the usual OLS standard errors, t-statistics,
F -statistics, and LM statistics are asymptotically valid.
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Some simulation exercise (Cont.)

Consider Case (ii):
yt = βyt−1 + ut ,

where ut ∼ N (0, σ2
u).

The asymptotic distribution of the OLS estimator β̂n is given by

√
n
(
β̂n − β

)
d−→ N

(
0, 1− β2

)
.

Let us again compared the empirical distribution of
√
n
(
β̂n − β

)
with the Normal

density N
(
0, 1− β2

)
.

We set σu = 0.2 and β = 0.9.
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(ii)
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Highly persistent time series

The process
yt = yt−1 + et , t = 1, 2, · · · ,

is called a random walk.

By assuming y0 = 0 and (et)t be an i .i .d . sequence with mean zero and variance σ2
e ,

we could show that

E(yt) = E(y0) = 0, ∀t ≥ 1

V(yt) = σ2
e t.

In addition, it can be shown that

Corr (yt , yt+h) =
√

t/(t + h).

The random walk process is not covariance stationary. Why?

Can have drift term in the process
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Example: pure random walk
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Example: random walk with drift
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Transformations on Highly Persistent Time Series

I(1) and I(0) processes

Transformations:
▶ ∆yt
▶ growth rate: ∆ log(yt), (yt − yt−1) /yt−1

Differencing time series also removes any linear time trend.
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Deciding Whether a Time Series Is I(1)

A random walk is a special case of what is known as unit root process.

We will discuss more on testing for unit root in Lecture 4.

Notice that, testing for I(1) can be done simply by using conventional
autocorrelation test. Since ρ1 = Corr (yt , yt−1) = 1 if (yt)t is I(1) but |ρ1| < 1 if I(0).
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Dynamically Complete Models and the Absence of Serial Correlation

Consider the general model
yt = β0 + x′tβ + ut .

If we assume
E (ut |xt , yt−1, xt−1, · · · ) = 0, (5)

we have
E (yt |xt , yt−1, xt−1, · · · ) = E (yt |xt) .

If (5) is satisfied, we have a dynamically complete model.

In other words, whatever is in xt , enough lags have been included so that further
lags of y and the explanatory variables do not matter for explaining yt .

Pay attention to the differences between (5) and conditions related to exogeneity
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Dynamically Complete Models and the Absence of Serial Correlation

If we have (5), Assumption TS.5’ is satisfied.

To see this, notice that (w .l .o.g . assume s < t)

E (utus |xt , xs) = E (E (utus |xt , xs , us) |xt , xs)
= E (usE (ut |xt , xs , us) |xt , xs) = 0.

Dynamically completeness implies no serial correlation.

Going further questions 2

Consider the FDL model:
yt = α+ z′tβ + ut ,

with MA(1) innovation: ut = et + α1et−1. (et)t is an i .i .d . sequence with mean zero and
variance σ2

e . Can this model be dynamically complete?
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The Homoskedasticity Assumption for Time Series Models

We shall briefly discuss the meaning of the Assumption TS.4’ in the following models:

Static model:
yt = β0 + β1zt + ut

AR(1) model:
yt = β0 + β1yt−1 + ut

FDL model:
yt = β0 + β1zt + β2zt−1 + β3zt−2 + ut
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Problems

Problem 1

Suppose that the equation

yt = α+ δt + β1xt1 + · · ·+ βkxtk + ut ,

satisfies the sequential exogeneity assumption.

(i) Suppose you difference the equation to obtain

∆yt = δ + β1∆xt1 + · · ·+ βk∆xtk +∆ut .

Why does applying OLS on the differenced equation not generally result in
consistent estimator of the βj?

(ii) What assumption on the explanatory variables in the original equation would ensure
that OLS on the differences consistently estimates the βj?

(iii) Suppose δ = 0. Describe what we need to assume for xt = (xt1, · · · , xtk) to be
sequentially exogenous. Do you think the assumptions are likely to hold in economic
applications?
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