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Properties of OLS with Serially Correlated Errors



Unbiasedness and Consistency

Notice that, assumption on Cov (ut , us | · · · ) are not imposed when deriving
unbiasedness and consistency.

This means that even Assumptions TS.5(5’) is violated, OLS estimator is still
consistent (and also unbiased under strict exogeneity).
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Efficiency and Inference

Consider a simple regression model with AR(1) innovations:

yt = β1xt + ut , ut = ρut−1 + et , t = 1, 2, · · · , n.

The OLS estimator β̂1n can be written as

β̂1n = β1 +

∑n
t=1 xtut∑n
t=1 x

2
t

.

The variance of β̂1n (conditional on X) takes the following form

V
(
β̂1n

)
=

σ2∑n
t=1 x

2
t

+ 2

(
σ2/

(
n∑

t=1

x2
t

)2) n−1∑
t=1

n−t∑
j=1

ρjxtxt+j ,

where σ2 = V(ut) and we have used the fact that E(utut+j) = ρjσ2.
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Efficiency and Inference

If we ignore the serial correlation and estimate the variance in the usual way, the
variance estimator will usually be biased.

In most applications, the neglected part is positive, the usual OLS variance formula
understates the true variance of the OLS estimator.

t-statistics are no longer valid for testing single hypotheses. The usual F and
LM-statistics for testing multiple hypotheses are also invalid.

Going further questions

Suppose that, rather than AR(1) model, ut follows the MA(1) model: ut = et + αet−1.

Find V
(
β̂1n

)
.
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Goodness of Fit

R-squared in population:

R2 = 1− σ2
u

σ2
y

When the data are stationary and weakly dependent, the WLLN kicks in, so that

1

n

n∑
t=1

(
yt − X′

t β̂n

)2 p−→ σ2
u,

1

n

n∑
t=1

(yt − yn)
2 p−→ σ2

y .

Nothing to worry about...
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Serial Correlation in the Presence of Lagged Dependent Variables

Statement

OLS is inconsistent in the presence of lagged dependent variables and serially correlated
errors.

Unfortunately, as a general assertion, this statement is false. There is a version of
the statement that is correct, but it is important to be very precise.
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Consider an AR(1) model with |β1| < 1:

yt = β1yt−1 + ut ,

where E (ut |yt−1) = 0. Then, we know that OLS estimator is consistent:

β̂1n =

∑n
t=1 yt−1yt∑n
t=1 y

2
t−1

p−→ β1

Now suppose that (yt)t follows an ARMA(1,1) process:

yt = β1yt−1 + ut + θ1ut−1,

but we still estimate β1 using OLS. Is it consistent?

Some derivations:

β̂1n − β1 =
1
n

∑n
t=1 yt−1ut

1
n

∑n
t=1 y

2
t−1

+
θ1

1
n

∑n
t=1 ut−1ut

1
n

∑n
t=1 y

2
t−1
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Why should we care this kind of things?

Suppose that we want to forecast yT+1 using the model:

yt = β1yt−1 + ut ,

ut = θ1ut−1 + et ,

where (et)t satisfies E (et |et−1, et−2, · · · ) = 0.

It can be shown that the optimal forecast is given by

E (yT+1|FT ) = β1yT + θ1 (yT − β1yT−1) .

What does this imply?



Serial Correlation–Robust Inference after OLS

For a linear regression model with k regressors:

yt = β0 +
k∑

d=1

βdxtd + ut , t = 1, 2, · · · , n

Write xt1 as a linear function of the remaining independent variables and an error
term

xt1 = δ0 +
k∑

d=2

δdxtd + rt ,

where the error rt has zero mean and is uncorrelated with xt2, xt3, · · · , xtk .
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Wooldridge (1989, EL) has shown that the asymptotic variance of the OLS
estimator β̂1n is given by (

n∑
t=1

E(r 2t )

)−2

V

(
n∑

t=1

rtut

)
.

If Assumption TS.5’ fails,

V

(
n∑

t=1

rtut

)
=

n∑
t=1

V(r 2t u2
t ) + 2

n∑
t=1

t−1∑
s=1

cov (rtutrsus),

where the terms in red is nonzero.

Needs truncation to make it practically feasible and replace ut with ût = yt − X′
t β̂n,

but, say, can we use formula as below?

1

n

n∑
t=1

r̂ 2t û
2
t + 2

1

n

n∑
t=1

r̂t ût r̂t−1ût−1 + · · ·

https://www.sciencedirect.com/science/article/abs/pii/0165176589900074


HAC standard errors

For a chosen integer g > 0, define

v̂ =
n∑

t=1

â2t + 2

g∑
h=1

[
1− h

g + 1

]( n∑
t=h+1

ât ât−h

)
,

where ât = r̂t ût .

The weights ωh = 1− h/(g + 1) is first suggested in Newey and West (1987) so the
above is also called Newey-West standard errors.

Let ”se
(
β̂1n

)
” be the usual (but incorrect) standard error and σ̂ be the usual root

mean squared error from estimating the regression, the heteroskedastic and
autocorrelation consistent (HAC) standard error is simply

se
(
β̂1n

)
=
[
”se
(
β̂1n

)
”/σ̂

]2 √
v̂ .
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How to choose g?

The integer g is often called truncation lag.

Consistency requires that g := gn → ∞ but how should we choose g in practice?

Should be dependent on data frequency

Can set gn = cnk and choose c based on rule-of-thumb
▶ k = 1/4 as recommended in Stock and Watson (2014)’s textbook, as consistency

requires gn grows at a slower rate than n1/4

Can be easily implemented in software by adding options
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Some more discussions...

Empirically, the HAC standard errors are typically larger than the usual OLS
standard errors when there is serial correlation.

Might be sensitive to the choice of g , since
▶ Practical recommendations are based on asymptotic argument.

How about a fixed g?
▶ heteroskedastic and autocorrelation robust (HAR) standard error
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Testing for Serial Correlation



Testing for Serial Correlation with Strictly Exogenous Regressors

Consider the model
yt = X′

tβ + ut , t = 1, 2, · · · , n,

where E (ut |X) = 0.

We would like to test whether there is a first-order serial correlation:

ut = ρut−1 + et .

The null hypothesis is simply H0 : ρ = 0.

What should we do?
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Testing for Serial Correlation with Strictly Exogenous Regressors

We can summarize the asymptotic test for AR(1) serial correlation as below.

(1) Run the OLS regression to obtain the OLS residuals, ût , for all t = 1, 2, · · · , n.
(2) Run the regression of ût on ût−1, for all t = 2, · · · , n, obtaining the coefficient ρ̂n on

ût−1 and its t-statistic tρ̂n .

(3) Use tρ̂n to test H0 : ρ = 0.
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Testing for Serial Correlation without Strictly Exogenous Regressors

Just change the second step:

(1) Run the OLS regression to obtain the OLS residuals, ût , for all t = 1, 2, · · · , n.
(2) Run the regression of ût on ût−1, 1, xt1, · · · , xtk , for all t = 2, · · · , n, obtaining the

coefficient ρ̂n on ût−1 and its t-statistic tρ̂n .

(3) Use tρ̂n to test H0 : ρ = 0.

A few reminders:

Should have an intercept in the second step (according to the book)

Why do we need to add variables in the second step?

Can easily adjust for heteroscedasticity and serial correlation when computing se (ρ̂n)
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Testing for Higher-Order Serial Correlation

Can easily adapted by adding more lags in the second step and use F -test for joint
significance

Alternatively, we can use the Lagrange multiplier (LM) test:

LMn = (n − q)R2
û

a∼ χ2
q,

where R2
û is the usual R-squared from the regression of ût on ût−1, · · · , ût−q,

xt1, · · · , xtk .
This is also called the Breusch-Godfrey test for AR(q) serial correlation.
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With quarterly or monthly data that have not been seasonally adjusted, we
sometimes wish to test for seasonal forms of serial correlation.

This is left as an exercise.

Going further questions

Suppose you have quarterly data and you want to test for the presence of first-order or
fourth-order serial correlation. With strictly exogenous regressors, how would you
proceed?



Correcting for Serial Correlation with Strictly Exogenous Regressors



Some motivation...

We have learned how to use HAC to have robust standard errors in the presence of
heteroscedasticity and serial correlation.

This is a nonparametric approach. We do not specify the form of heteroscedasticity
and serial correlation. However,

▶ We need to specify the truncation lag parameter g . Results might be sensitive to the
choice of g .

How about a parametric approach?
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Obtaining the Best Linear Unbiased Estimator in the AR(1) Model

Consider the model with a single explanatory variable:

yt = β0 + β1xt + ut , t = 1, 2, · · · , n.

We do not assume no serial correlation, but specify an AR(1) dynamics for ut :

ut = ρut−1 + et ,

where |ρ| < 1 and (et)t is i .i .d . with zero mean and variance σ2
e .
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By quasi-differencing, we obtain

ỹt = (1− ρ)β0 + β1x̃t + et ,

where ỹt = yt − ρyt−1 and x̃t = xt − ρxt−1.

The error term et now satisfies Assumptions TS.4-5.

However, the above is not defined for t = 1.

We note that, for t = 1

(1− ρ2)1/2y1 = (1− ρ2)1/2β0 + β1(1− ρ2)1/2x1 + (1− ρ2)1/2u1,

where V
(
(1− ρ2)1/2u1

)
= σ2

e .

Applying OLS on the transformed model is essentially another example of a
generalized least squares (or GLS) estimator, which we have seen in Chapter 8.

Going deeper...

How do we construct the OLS estimator based on the transformed model?



Feasible GLS Estimation

Very simple, just replace ρ with ρ̂n from OLS regression of ût on ût−1.

Such estimator is called
▶ Cochrane-Orcutt (CO) estimation if the first observation is omitted;
▶ Prais-Winsten (PW) estimation if the first observation is used.

In practice, we may need iteration to improve accuracy.
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Comparing OLS and FGLS

It can be shown that, for the regression model with AR(1) error, consistency of
FGLS requires ut to be uncorrelated with xt−1, xt , and xt+1.

What should we do in practice?
▶ When both yield similar estimates, ...
▶ When there are practical differences, ...
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Correcting for Higher-Order Serial Correlation

Rather straightforward...

May be more involved in dealing with initial observations...
▶ Don’t worry, we rarely have to compute these by ourselves.
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What if the Serial Correlation Model Is Wrong?

George Box

All models are wrong, some are useful.

Start with higher-order serial correlation?

Using HAC after the initial AR(1) specification for the error term?

Keep in mind that serial correlation only causes standard formula for OLS variance to be
invalid, nothing related to the consistency of β̂n.
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Heteroskedasticity in Time Series Regressions



Testing for Heteroskedasticity

To use what we have learned, we must assume that the error term should be
uncorrelated.

Serial correlation perhaps needs to come first.

Breusch-Pagan test? White test? Weighted least squares?
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Autoregressive Conditional Heteroskedasticity
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Autoregressive Conditional Heteroskedasticity
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Autoregressive Conditional Heteroskedasticity

Suppose that we have the model

rt =
√
htϵt , ϵt

i.i.d.∼ (0, 1)

How to model those volatility ”clustering” effects?

Specify an ARCH(1) model (Engle (1982, ECTA)):

ht = α0 + α1r
2
t−1

It is like an AR(1) for variance, so we must have restrictions on α0, α1.
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How to estimate the model parameters?

Notice that
r 2t = ht + htϵ

2
t − ht = α0 + α1r

2
t−1 + ut ,

where ut = ht
(
ϵ2 − 1

)
.

This suggests that (α0, α1)
′ can be simply estimated using OLS!

Unlikely to be efficient and requires high order moment restrictions on ϵt .
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Regression models with ARCH errors

Suppose that we add the mean terms for systematic risk:

rit = αi + βi rM,t +
√
hitϵit , ϵit

i.i.d.∼ (0, 1)

hit = α0i + α1i r
2
i,t−1.

It can be shown that the error terms uit =
√
hitϵit have zero mean, variance α0i

1−α1i
,

and are serially uncorrelated.

OLS should still have desirable properties with ARCH errors.

Question

If so, why should we still care about ARCH errors?

Can also be extended to dynamic models...
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Problem 1

Consider the model:

yt = β0 +
K∑

k=1

βkxtk + ut ,

ut =
√
htvt ,

vt = ρvt−1 + et , |ρ| < 1,

where the explanatory variables X are independent of et for all t, and ht is a function of
the xtj . The process (et)t has zero mean and constant variance σ2

e , and is serially
uncorrelated. Briefly describe the FGLS estimation procedure for (β0, β1, · · · , βK )

′.



Problem 2

True or False?

(i) The Cochrane-Orcutt and Prais-Winsten methods are both used to obtain valid
standard errors for the OLS estimates when there is a serial correlation.

(ii) If the errors in a regression model contain ARCH, they must be serially correlated.


