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Unit root and Cointegration



Testing for unit roots

The simplest approach to testing for a unit root begins with an AR(1) model:

yt = dt + ρyt−1 + et , t = 1, 2, · · · , (1)

where y0 is the observed initial value.

We assume that (et)t has zero mean, given the past values of y :

E (et |yt−1, yt−2, · · · , y0) = 0. (2)

This condition is weaker than, but practically identical to i .i .d . (homoscedasticity
and no serial correlation).
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Testing for unit roots

The null hypothesis is that (yt)t has a unit root:

H0 : ρ = 1,

against the one-sided alternative ((yt)t is covariance stationary):

H1 : ρ < 1.

It is common to let dt unspecified when forming hypothesis.
▶ There are generally three commonly used specifications for dt : dt = {}, dt = α, and

dt = α+ δt.
▶ Sadly, this is because asymptotic distributions of test statistics depend on these

nuisance parameters.

We can, of course, alter H0 and H1:
▶ See the well known ”KPSS” unit root test: Kwiatkowski, Phillips, Schmidt, and Shin

(1992).
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https://www.sciencedirect.com/science/article/abs/pii/030440769290104Y
https://www.sciencedirect.com/science/article/abs/pii/030440769290104Y


Testing for unit roots

A convenient equation for carrying out the unit root test is

∆yt = α+ θyt−1 + et ,

where θ = ρ− 1 and ρ is given as in (1).

We can use conventional t-test for the null hypothesis:

H0 : θ = 0.

However, the asymptotic distribution of such t-statistic is not N (0, 1) and rather
nonstandard.
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Testing for unit roots
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Testing for unit roots

Table: Asymptotic Critical Values for Dickey-Fuller Test

1% 2.5% 5% 10%
No time trend -2.57 -2.22 -1.94 -1.62

Intercept -3.43 -3.12 -2.86 -2.57
Linear time trend -3.96 -3.66 -3.41 -3.12
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Testing for unit roots

What to do if we fail to reject the null hypothesis?

We should only conclude that the data do not provide strong evidence against H0.

You have to decide by yourself whether you use the data in levels or in
first-difference in the subsequent regression analyses.
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Testing for unit roots: Augmented Dickey-Fuller test

Consider an AR(2) model for (yt):

yt = ϕ1yt−1 + ϕ2yt−2 + εt

= (ϕ1+ϕ2) yt−1−ϕ2∆yt−1 + εt .

If (yt)t has unit root, ϕ1 + ϕ2 = 1.

This suggests we can test for unit root based on the regression:

∆yt = dt + θyt−1 + γ∆yt−1 + εt .

Can also be extended to models with higher-order lags...

Interestingly, it can be shown that γ̂n has standard asymptotic distribution, so
conventional t-test and F -test apply to those parameters.
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Testing for unit roots: other issues

Of course, apart from adding lags, we can also use simple model, but with HAC
standard errors when calculating t-statistic.

There are many different variants of unit root tests developed in the literature.
▶ See BDGH (1993, Section 4-3) for a discussion on other tests.

We focus on the covariance-stationary alternative (left-tail). The other side
(right-tail) may be of independent interests.

▶ Google ”PSY testing for explosive bubbles” if you are interested in.
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https://academic.oup.com/book/36111?login=false


Spurious regression

See for several (funny) examples at this website.
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https://www.tylervigen.com/spurious-correlations


Spurious regression
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Spurious regression

Suppose we generate two independent random walks:

xt = xt−1 + vt , yt = yt−1 + ut , t = 1, 2, · · · ,

where (vt)t and (ut)t are independent, identically distributed innovations, with mean
zero and variances σ2

v and σ2
u, respectively.

We then run the following regression:

yt = α+ βxt + et ,

and test the null hypothesis H0 : β = 0 by the usual t-statistic:

tβ=0 =
β̂n

se
(
β̂n

) .
What would we expect?
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Spurious regression

Let us look at the simulation results reported in Ganger and Newbold (1974, JoE):

If we use the N (0, 1) critical values, the rejection frequency at the 5% level, is
roughly 75% !!!

Some recent replication results by myself:
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https://www.sciencedirect.com/science/article/abs/pii/0304407674900347


Spurious regression

Why it is the case? Let us reconsider the regression model:

yt = α+ βxt + et .

Under the null hypotheses: H0 : α = β = 0, we thus have yt = et .

In other words, the error (et)t is a random walk process under the null, which clearly
violates even the asymptotic version of the Gauss-Markov assumptions from Chapter
11.
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Spurious regression: remedies

Just add lags:
yt = α+ ρyt−1 + βxt + δxt−1 + et .

There exist values for the coefficients, specifically ρ = 1 and α = β = δ = 0, for
which (et)t is I (0).

It can be shown that
√
n
(
β̂n − β

)
converges to a Normal distribution and t-statistic

for H0 : β = 0 is asymptotically N (0, 1).
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Cointegration

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2003
was divided equally between Robert F. Engle III ”for methods of analyzing economic
time series with time-varying volatility (ARCH)” and Clive W.J. Granger ”for
methods of analyzing economic time series with common trends (cointegration)”
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Cointegration

Definition

Suppose that both (xt)t and (yt)t are I(1) processes. We say x and y are cointegrated if
there exists β ̸= 0, such that yt − xtβ is I(0).

We call (1,−β)′ the cointegrating vector.

Going further questions

Let {(yt , xt) : t = 1, 2, · · · } be a bivariate time series where each series is I(1) without
drift. Explain why, if yt and xt are cointegrated, yt and xt−1 are also cointegrated.
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Cointegration
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Example

Let

r6t : annualized interest rate for six-month T-bills

r3t : annualized interest rate for three-month T-bills

sprt = r6t − r3t : term spread

If r6 and r3 were not cointegrated, the difference between interest rates could become
very large, with no tendency for them to come back together. Based on a simple
arbitrage argument, this seems unlikely. Therefore, large deviations between r6 and r3
are not expected to continue: the spread has a tendency to return to its mean value.



Testing for cointegration

If β is known, very simple, just test whether ut = yt − xtβ is covariance stationary.

If β is unknown, the critical values for unit root tests have to be retabulated to
account for estimation of β.

The following is taken from Davidson and MacKinnon (1993, Table 20.2):

Table: Asymptotic Critical Values for Cointegration Test

1% 2.5% 5% 10%
Intercept -3.90 -3.59 -3.24 -3.04

Linear time trend -4.32 -4.03 -3.78 -3.50

Of course, ”business as usual” if we want to add trend, deal with serial correlation,
etc.
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Estimation of cointegrating vector

Cointegration only states that (ut)t in the model

yt = βxt + ut ,

has to be stationary. It has noting to do with exogeneity of xt .

Suppose that xt = xt−1 + vt with x0 = 0. Then, xt =
∑t

s=1 vs .

Are we willing to assume that

cov (xt , ut) = cov

(
t∑

s=1

vs , ut

)
= 0?
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Example: testing for expectation hypothesis (EH)

hy6t = β0 + β1hy3t−1 + ut ,

hy3t = hy3t−1 + vt ,

where

hy6t : three-month holding yield (in percent) from buying a six-month T-bill at time
(t − 1) and selling it at time t (three months hence) as a three-month T-bill

hy3t−1: three month holding yield from buying a three-month T-bill at time (t − 1)

Question

Is it plausible to have cov (hy3t−1, ut) = 0?
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Estimation of cointegrating vector

If ̸= 0, do we still have consistency of β̂n?

Fortunately, the answer is YES. Thanks to the fact that (xt)t is very persistent, we
do not need to worry about the usual ”Simultaneous Equation Bias” in the
cross-sectional or even weakly stationary case.

However, the asymptotic distribution of β̂n is no longer standard, making usual
t-test and F -test asymptotically invalid.

There are methods developed to obtain valid ”N”-type of inference in this context.
(requires advanced treatment so goes beyond the scope of the course...)
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The decline of cointegration...
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Error Correction Models

In general, we can specify an ARDL(1,1) model for (yt)t and (xt)t when both are
I(1):

∆yt = α0 + α1∆yt−1 + γ0∆xt + γ1∆xt−1 + ut .

If st = yt − xtβ ∼ I (0), we may add st−1 to the above equation:

∆yt = α0 + α1∆yt−1 + γ0∆xt + γ1∆xt−1+δst−1 + ut ,

where E (ut |Ft−1) = 0.

The above is called the error correction model.
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Error Correction Models

How should we interpret this model?

If st−1 > 0, then y in the previous period has overshot the equilibrium; because
δ < 0, the error correction term works to push y back toward the equilibrium.

If st−1 < 0, then ...

Estimation of error correction model is fairly straightforward, if β is known.
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Example

We consider the error correction model for the holding yields:

∆hy6t = α0 + γ0∆hy3t−1 + δ (hy6t−1 − hy3t−2) + ut ,

where

hy6t : three-month holding yield (in percent) from buying a six-month T-bill at time
t − 1 and selling it at time t as a three-month T-bill;

hy3t−1: three-month holding yield from buying a three-month T-bill at time t − 1.

The expectations hypothesis implies, at a minimum, hy6t and hy3t−1 are cointegrated.
In addition, we expect δ < 0.



Forecasting



Forecasting from The New York Fed DSGE Model
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Set up of the environment

yt+1: target to forecast

Ft : information set

ft : a one-step-ahead forecast

ft,h: a h-step-ahead forecast

et+1 = yt+1 − ft : forecast error

ℓ(·): loss function

Optimal forecast

Optimal forecast f ∗t is defined as one minimizes the conditional expected loss:

f̂ ∗t := argmin E [ℓ(et+1)|Ft ] .

Optimal forecast under squared error loss

When ℓ (et+1) = e2t+1, f̂
∗
t = E (yt+1|Ft).
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Example

We say the process (yt)t is a

martingale difference sequence (M.D.S.) if E (yt+1|Ft) = 0;

martingale if E (yt+1|Ft) = yt .

Then, under the squared error loss, the one-step-ahead optimal forecast of

a M.D.S. is always zero;

a martingale is always the present value.



Types of Regression Models Used for Forecasting

Static models:
yt = β0 + β1zt + ut

E (yt+1|Ft) = E (β0 + β1zt+1 + ut+1|Ft) = β0 + β1E (zt+1|Ft)

Dynamic models:
yt = δ0 + α1yt−1 + γ1zt−1 + ut (3)

E (yt+1|Ft) = E (δ0 + α1yt + γ1zt + ut+1|Ft) = δ0 + α1yt + γ1zt

All need to assume that E (ut+1|Ft) = 0 !!!
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Interval forecast

Suppose that sample runs from t = 1, 2, · · · , n and we need to forecast yn+1 using
model (3).

We obtain the LS estimator β̂n =
(
δ̂0n, α̂1n, γ̂1n

)′
and obtain the optimal forecast

f̂n = Xnβ̂n,

where Xn = (1, yn, zn)
′.

f̂n is a point forecast and a random variable.

How should we capture the uncertainty around the point forecast?

Yu Bai (City University of Macau) Time Series Analysis 34 / 43



Interval forecast

The forecast error is given by

ên+1 = yn+1 − f̂n.

Thus,

se (ên+1) =

√[
se(f̂n)

]2
+ σ̂2.

The (approximate) 95% forecast interval is

f̂n ± 1.96 · se (ên+1) .

se (ên+1) can also be obtained by running the augmented regression yt on
(1, yt−1, zt−1, dnp1t)

′:
▶ dnp1t equals 1 if t = n + 1 and zero otherwise
▶ The coefficient on dnp1t is actually the forecast error.
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Comparing One-Step-Ahead Forecasts

Suppose we specify the following predictive regression model for stock return:

rt+1 = α+ xtβ + ut+1

How should we assess the predictability?

Use in-sample criteria, such as R2?

Use out-of-sample (OOS) criteria?
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Multiple-Step-Ahead Forecasts

Suppose we specify an AR(1) model:

yt = α+ ρyt−1 + ut ,

where E (ut |Ft−1) = 0.

Under squared error loss, the optimal 1-step ahead forecast is

f̂n = α+ ρyn,

with forecast error
en+1 = un+1

is also a M.D.S..

What about 2-step ahead?
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Multiple-Step-Ahead Forecasts

Let us compute the conditional expectation:

E (yn+2|Fn) = α+ ρE (yn+1|Fn) = α+ ρf̂n = α(1 + ρ) + ρ2yn,

where we have replaced the unknown yn+1 with its optimal forecast.

The forecast error is given by

en+2 = yn+2 − f̂n,2 = {α+ ρyn+1 + un+2} −
{
α(1 + ρ) + ρ2yn

}
= ρ (yn+1 − α− ρyn) + un+2

= ρun+1 + un+2,

which is a MA(1) process.
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Multiple-Step-Ahead Forecasts

The h-step ahead optimal forecast from an AR(1) model can be shown to take the
form

f̂n,h =
(
1 + ρ+ · · ·+ ρh−1

)
α+ ρhyn.

The forecast error en+h follows a MA(h-1) process.

Interval forecast can be similarly defined, but perhaps too narrowed or even actually
invalid.
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Multiple-Step-Ahead Forecasts

What about AR(2) model?

yt = α+ ρ1yt−1 + ρ2yt−2 + ut ,

where E (ut |Ft−1) = 0.

Same as before, and we could obtain a recursive formula.
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Forecasting with integrated time series

Because
yt+1 = ∆yt+1 + yt

Our forecast of yn+1 at time n is just

f̂n = ĝn + yn,

where ĝn is a forecast of transitory dynamics ∆yn+1 at time n. Needs to specify an
AR model.

Multi-step ahead forecasts follow similar, since

yn+h = (yn+h − yn+h−1) + (yn+h−1 − yn+h−2) + · · ·+ (yn+1 − yn) + yn

= ∆yn+h +∆yn+h−1 + · · ·+∆yn+1 + yn
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Example

We again use the dataset PHILLIPS, but only for the years 1948 through 1996, to
forecast the U.S. unemployment rate from 1997 to 2003. We use two models. The first
one is an AR(1) model:

unemt = α+ βunemt−1 + ut .

In the second model, we add lagged inflation as an additional predictor:

unemt = α+ βunemt−1 + γinft−1 + ut .

The OOS RMSE based on the first model is roughly 0.576, while for second model, it is
0.522. If we use MAE, it is 0.542 for the first model and 0.484 for the second model,
respectively. Both criteria indicate adding inflation to the model helps to improve the
forecast accuracy for the unemployment rate.




