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A Proof of Theorem 1

In the following proof, the notation ∼ indicates asymptotic equivalence. We say that a is asymptotically
equivalent to b if a/b = O(1).

As shown in equation (14) of Bitto and Frühwirth-Schnatter (2019), the marginal density for β j ∼

NG(λ, κ), given λ, κ, can be expressed as
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where Kp(·) is the modified Bessel function of the second kind of index p. Let us first consider the
concentration properties. If λ > 1
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If 0 < λ < 1
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where Ip(·) is the modified Bessel function of the first kind with index p. By 9.6.7 in Abramowitz and
Stegun (1965), as
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We now move to the asymptotic tail behavior. By 9.7.2 in Abramowitz and Stegun (1965), as
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which completes the proof.

B Model specifications and priors

B.1 Country-specific VARs

The country-specific VAR(p) model — denoted the CVAR specification in the paper’s results — is speci-
fied as

yi,t = ci +

p∑
l=1

Bi,lyi,t−l + ui,t (1)

ui,t = A−1
i H0.5

i,t ϵi,t, ϵi,t ∼ i.i.d. N(0, IG), (2)

where i = 1, . . . ,N, t = 1, . . . ,T , and the dimension of yi,t, ui,t and ϵi,t is G × 1. A−1
i is a lower triangular

matrix with diagonal elements equal to 1. Hi,t is diagonal with generic j-th element hi j,t evolving as a
random walk (RW):

ln hi j,t = ln hi j,t−1 + ei j,t, j = 1, . . . ,G, (3)

where eit ∼ N(0,Φi) with a full covariance matrix Φi as in Primiceri (2005).
Letting Bi = [ci, Bi,1, . . . , Bi,p]′, the priors are specified as:

vec(Bi) ∼ N(0,ΩBi
)

vec(Ai) ∼ N(0,ΩAi
)

Φi ∼ IW(Q0,W0).
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For the prior variances of the autoregressive coefficient matrices, we set them as in the Minnesota prior:

ΩB(mn)
i,l
=


λ1
lλ3

1
σ2

n
for the coefficients on own lags

λ2
lλ3

σ2
m
σ2

n
for the coefficients on cross-variable lags

λ0σ
2
m for the intercept,

(4)

where m, n = 1, . . . ,G. λ1 measures the overall tightness to coefficients related to own lags. λ2 is related
to cross-variable shrinkage. We assume Gamma priors for these two hyperparameters: λ1 ∼ G(1, 0.04),
λ2 ∼ G(1, 0.042). λ3 determines the additional shrinkage for coefficients associated with higher order
lags and is set to 2 (quadratic decay). The scale parameters σ2

m, σ2
n are obtained from univariate AR(1)

regressions. We elicit an uninformative prior for the intercept by setting λ0 = 100. In the case of the free
elements in the contemporaneous matrix Ai, we set the prior mean to 0 and the prior variance to be non-
informative: ΩAi

= 10 × I. Finally, as in the previous section, we follow the literature and set a modestly
informative prior for Φ: Φ ∼ IW(Q0,W0), where Q0,W0 take very conservative values: W0 = 0.01 × I and
Q0 = G + 2.1

For the country-specific VAR with hierarchical shrinkage (CVAR-H), we follow exactly the approach
in Chan (2021). Following Chan, the reduced-form model (1) is expressed in structural form

Aiyi,t = c̃i +

p∑
l=1

B̃i,lyi,t−l + H0.5
i,t ϵi,t,

where c̃i = Aci, B̃i,l = ABi,l, and the innovations ei j,t in (3) are assumed to be independent across variables
(equation j = 1, . . . ,G of the VAR for country i): ei j,t ∼ N(0, σ2

ei j
). The priors are specified as

βi, j|λ1, λ2, ψi, j,Ci, j ∼ N(0, 2λi, jψi, jCi, j),

where λi, j equals λ1 if βi, j are related to own lags but equals λ2 for coefficients related to cross-variable
lags. Ci, j are specified according to

Ci,l =

 1
lλ3

1
σ2

n
for the coefficients on own lags

1
lλ3

σ2
m
σ2

n
for the coefficients on cross-variable lags


and ψi, j are assumed to follow a Gamma prior:

ψi, j ∼ G(νψ, νψ/2),

with an additional hyper-prior on νψ ∼ G(1, 1). For σ2
ei j

, priors are assumed to be σ2
ei j
∼ IG(5, 0.04).

1See, e.g., D’Agostino et al. (2013) and Clark and Ravazzolo (2015).
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In Section 6.4, we also consider a version of model (1)-(2) with hierarchical shrinkage and Horseshoe
prior. Similarly to the definitions of Section 3, let βc, βAR, and βo be the coefficients related to intercept, own
lags, and cross-variable lags, and let βi, j be the jth elements in the coefficient block i, where i = {c, AR, o}.
In this case, we replace the prior specification in (4) by assuming that βi, j follows (10) (in the main paper),
where the global shrinkage parameter λ differs in each coefficient block.

B.2 Factor-augmented country-specific VARs

The factor-augmented country-specific VAR (CFAVAR) takes the form:yi,t

Ft

 = ci +

p∑
l=1

Bi,l

yi,t−l

Ft−l

 + ui,t

Y∗t = ΛFt + εt

Ft =

q∑
l=1

ΠlFt−l + vt, vt ∼ i.i.d. N(0,Σv),

where Y∗t = (y′1,t, . . . , y
′
i−1,t, y

′
i+1,t, y

′
N,t)
′ is the collection of foreign variables. Ft is an r × 1 vector of weakly

exogenous unobservable factors representing foreign information, which affect the variables in country i

via the loadings B∗i,l, i = 1, . . . ,N, l = 1, . . . , p. Factors are estimated (recursively, as forecasting moves
forward in time and the estimation sample expands) by principal components (see, e.g., Stock and Watson
(2002a) and Stock and Watson (2002b)) and assumed to follow a VAR process with lag length q. In the
VAR for [yi,t, Ft], the innovation vector ui,t includes the stochastic volatility structure previously indicated
in the country-specific VAR’s equation (2).

Priors for ci and Bi,l are specified in the same way as in the country-specific VARs. The same hyper-
priors are imposed on (λ1, λ2), which are the overall tightness parameters on coefficients related to own
lags and cross-variable lags. We specify the maximum number of factors and lag length to be rmax = 4 and
qmax = 4, respectively. The number of factors is determined by the IC2 information criterion of Bai and Ng
(2002), and the number of lags is determined by the Bayesian Information Criterion (BIC). The VAR for
the factors is separately estimated by Bayesian methods with non-informative priors. Specifically, letting
π = vec([Π1, . . . ,Πq]′), we specify π ∼ N(0, 100× Ir2q). Following Korobilis (2016), Σ̂v is fixed at the OLS
estimate to streamline computations (it also eliminates the uncertainty associated with covariance matrix
estimation).

B.3 Global VARs

A GVAR model consists of a number of country-specific equations that are combined to form a global
model. Assuming that the global economy consists of N + 1 countries, in the first step, we estimate the
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following country-specific VARX model for every country i = 0, 1, ...,N:

yi,t = ci +

p∑
l=1

Bi,lyi,t−l +

p∗∑
l=0

B∗i,ly
∗
i,t−l + ui,t, (5)

ui,t = A−1
i H0.5

i,t ϵi,t, ϵi,t
i.i.d.
∼ N(0, IG), (6)

where t = 1, ...,T , yi,t is a G×1 vector of endogenous variables in country i, ci is a G×1 vector of intercept
terms, Bi,l(l = 1, ..., p) denotes the G×G matrix of parameters associated with lagged endogenous variables
and B∗i,l(l = 0, 1, ..., p∗) is the matrix of parameters associated with contemporaneous and lagged weakly
exogenous variables. The weakly exogenous foreign variables y∗i,t are constructed as a weighted average
of the endogenous variables in other countries:

y∗i,t =
N∑

j=0

wi, jy j,t (7)

and the weights satisfy the following two restrictions: wi,i = 0 and
∑N

j=0 wi, j = 1. Weights are constructed
from standardized bilateral trade flows. The data are available from Mohaddes and Raissi (2020).

In the second step, N + 1 country-specific VARX models are stacked to form a global model, which is
given by

Gyt = c +
Q∑

q=1

Hqyt−q + ut, (8)

where yt = (y′1,t, ..., y
′
N,t)
′, Q = max(p, p∗), and G and Hq are both NG × NG dimensional coefficient

matrices. Details on how to solve the global model can be found in Pesaran et al. (2009) and Huber
(2016).

Priors for ci and Bi,l are specified in the same way as in the CFAVAR. More specifically, ci and Bi,l

follow the same specification as in (4). For the prior on the elements of B∗i,l, means are set to zero and
variances are defined as: λ4

σ2
m
σ2

n
, where σ2

m, σ
2
n are obtained from univariate AR(1) regressions. We assume

a Gamma prior for λ4 ∼ G(1, 0.022). Both p and p∗ are set to 4.

B.4 Multi-country VARs

B.4.1 Factor shrinkage approach

The factor shrinkage approach used with the CC specification relies on the VAR written in system form.
We define Xt = ING ⊗ x′t , where xt = (1,Y ′t−1, . . . ,Y

′
t−p)′, βi is the k× 1 vector containing coefficients related

to each i, k = NGp + 1, and β = (β′1, . . . , β
′
N)′ is the NGk × 1 vector containing all coefficients. Write the
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VAR as
Yt = Xtβ + ut, (9)

where ut ∼ i.i.d. N(0,Σt).
Canova and Ciccarelli (2009) assume that the vector of coefficients β can be expressed as:

β =

F∑
i=1

Ξiθi (10)

where Ξ = [Ξ1, . . . ,ΞF] are known matrices and θ = (θ′1, . . . , θ
′
F)′ is a low dimensional vector (dim(θ) < K,

where K = kNG) of unknown parameters, and θ1, . . . , θF are mutually orthogonal.2

We consider the factorization used in Canova et al. (2007) and Canova and Ciccarelli (2013). We
assume F = 4. θ1 is a scalar factor that is common across all countries, θ′2 = (θ2,1, . . . , θ2,N)′ is an N × 1
vector of country-specific factors, θ′3 = (θ3,1, . . . , θ3,G)′ is a G × 1 vector of variable-specific factors and
θ′4 = (θ4,1, . . . , θ4,p−1)′ is a (p − 1) × 1 vector of lag-specific factors.3 Ξ1, . . . ,Ξ4 are assumed to be known
with elements associated with the corresponding original parameters equal to 1 and 0 otherwise. For
example, consider a multi-country VAR model in (1) with N = 2,G = 2, p = 1. In this case, Ξ1 is a 20× 1
vector of ones, and Ξ2 and Ξ3 take the form:

Ξ2
20×2
=


ι1 0
ι1 0
0 ι2

0 ι2

 , Ξ3
20×2
=


ι3 0
0 ι4

ι3 0
0 ι4

 ,

where ι1 = (0, 1, 1, 0, 0)′, ι2 = (0, 0, 0, 1, 1)′, ι3 = (0, 1, 0, 1, 0)′, and ι4 = (0, 0, 1, 0, 1)′. Thus, we can
rewrite (9) as:

Yt = Xtβ + ut

= Xt(Ξθ) + ut = X̃tθ + ut. (11)

In this case, dim(θ) = N + G + p. By construction, the X̃t’s are linear combinations of the original
right-hand-side variables in (9), and the parameterization above can capture comovement across lagged
variables.

To incorporate SV, we decompose Σt as Σt = A−1HtA′−1, where A is lower diagonal with diagonal

2A more general form is β =
∑F

i=1 Ξiθi+e, where e ∼ N(0,Σ⊗σ2I) is an approximation error uncorrelated with ut. However,
most of the literature assumes an exact factorization (σ2 = 0); see, for example, Canova et al. (2007); Canova and Ciccarelli
(2009); Dées and Güntner (2017). Koop and Korobilis (2019) estimate σ2 by a forgetting factor approach and find that it is very
small (< 0.01). In some limited checks, we found that considering the approximation error harms forecasting performance.

3To avoid collinearity with θ1, θ4 can contain at most p − 1 components.
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elements equal to 1, and the diagonal elements in Ht evolve according to (3).
We specify the priors for θ, A, and Φ as (independent), Normal, Normal, and Inverse Wishart, respec-

tively:
θ ∼ N(0,Ωθ), a ∼ N(0,Ωa), Φ ∼ IW(Q0,W0), (12)

where a denotes the vector of free elements in A. The prior mean for θ is set to zero, and the prior
covariance matrix Ωθ is assumed to be diagonal. Letting ωθi, j be the elements in Ωθ associated with the jth
elements in θi, where i = 1, . . . , 4, then

ω
θi, j
=


NG∑
m=1

σ2
m i = 1, 2, 3

NG∑
m=1

σ2
m

l2 , i = 4, l = 2, . . . , p

.


The prior mean for a is set to 0, and the prior variance is set to Ωa = 10 × I. Q0,W0 are specified as
Q0 = NG + 2, W0 = 0.01 × I.

B.4.2 Prior specifications for other models

For the approach in Angelini et al. (2019) and the hierarchical shrinkage considered in this paper, the prior
for free elements in A is assumed to be Normal with zero mean and variance equal to 10 × ING. The prior
for Φ takes the form Φ ∼ IW(Q0,W0), and Q0,W0 are specified as Q0 = NG + 2, W0 = 0.01 × I.

For the prior in (4), σ2
i , σ2

j are obtained from univariate AR(1) regressions. The prior for the inter-
cept is assumed to be uninformative by setting the prior variance equal to 100 × σ2

i , where σ2
i is again

from a univariate AR(1) regression. The hyper-priors on overall shrinkage parameters are specified in the
same way as in country-specific VARs. For the additional hyperparameter λ4 controlling the tightness for
coefficients related to cross-variable lags for foreign countries, we use a prior of λ4 ∼ G(1, 0.022).

For the SSSS prior, we follow Korobilis (2016) exactly. For (7) and (8) (in the main paper) , we set
ξ2

i j = τ
2
i j = 4 and cDI = cCSH = 0.0025. The priors for indicators are specified as

γDI
i j ∼ Bernoulli(πDI

i j ), πDI
i j ∼ B(1, 1)

γCSH
i j ∼ Bernoulli(πCSH

i j ), πCSH
i j ∼ B(1, 1).

For the Horseshoe prior, no more prior specifications are needed. For the Normal-Gamma prior, recall
that we specify aω ∼ E(b) and κ2 ∼ G(d1, d2). We set b equal to the number of coefficients in each block
and elicit a non-informative prior for κ2 by setting d1 = d2 = 0.01. For the Normal-Gamma-Gamma prior,
recall that 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and we set αa = αc = 2, βa = βc = 1.
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B.5 Univariate models

For AR(p)-SV models applied to each scalar output growth or interest rate variable, generally denoted yt,
we have

yt = c +
p∑
ℓ=1

ρℓyt−ℓ + ut,

ut = h0.5
t vt, vt

i.i.d.
∼ N(0, 1),

log ht = log ht−1 + et, et
i.i.d.
∼ N(0, σ2

e).

As in Clark and Ravazzolo (2015), lag length is set to 2 for output growth and 4 for the interest rate.
Letting θ = (c, ρ1, . . . , ρp)′, we specify the following priors:

θ ∼ N(0,V), σ2
e ∼ IG(vh, S h), log h0 ∼ N(a0, b0).

V is assumed to be diagonal with elements equal to θ1
ℓθ2

, ℓ = 1, . . . , p, for autoregressive coefficients and
100 × σ̂2

y for the intercept. θ1 is set to 0.04, θ2 is set to 2, and σ̂2
y is obtained from a univariate AR(1)

regression. We use a modestly informative prior for σ2
e to control the time variation by setting vh equal to

2 and S h to 0.04. For the prior on initial conditions, we set a0 = 0 and b0 = 10.
For the UCSV model, we have

yt = τt + ε
y
t , ε

y
t ∼ N(0, eht),

τt = τt−1 + ε
τ
t , ε

τ
t ∼ N(0, egt),

ht = ht−1 + ε
h
t , ε

h
t ∼ N(0, ω2

h),

gt = gt−1 + ε
g
t , ε

g
t ∼ N(0, ω2

g),

with initial conditions τ0, h0 and g0 as unknown parameters. We can rewrite the above UCSV model in
the non-centered parameterization:

yt = τt + e
1
2 (h0+ωhh̃t)ε̃

y
t ,

τt = τt−1 + e
1
2 (g0+ωgg̃t)ε̃τt ,

h̃t = h̃t−1 + ε̃
h
t ,

g̃t = g̃t−1 + ε̃
g
t ,

where h̃0 = g̃0 = 0 and ε̃y
t , ε̃τt , ε̃h

t , and ε̃g
t are all i.i.d. N(0, 1). We assume Normal priors for all model

parameters: ωh ∼ N(0, 0.22), ωg ∼ N(0, 0.22), h0 ∼ N(0, 10), g0 ∼ N(0, 10), and τ0 ∼ N(0, 10).
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C Algorithms

C.1 Algorithms for VARs with Minnesota-type prior

For all the country-specific VARs, country-specific factor-augmented VARs, global VARs, and multi-
country VARs with Minnesota prior, the MCMC samplers follow almost exactly the steps in Carriero et al.
(2022), but an additional step is needed to update prior tightness parameters. We highlight three issues
related to the sampler, and refer interested readers to Appendix A.3 in their paper for other details.

Step 1: Update β|·. We update the coefficients equation by equation, as in the corrected triangular
algorithm in Carriero et al. (2022). Details can be found in Appendix C.5.

Step 2: Update λi|·, i = 1, 2, 4. Let S λi , i = 1, 2, 4, be the collection of all indexes such that parameters
associated with the overall shrinkage parameters belong to this set. It can easily be shown that, with a
Gamma prior, λi ∼ G(1, ci), conditional posteriors follow a Generalized Inverse Gaussian distribution:

λi|· ∼ GIG
(
1 −

dim(S λi)
2

, 2ci,
∑

(i, j)∈S λi

β2
i, j

2Ci, j

)
.

The density of x ∼ GIG(p, a, b) is given by f (x) ∝ xp−1 exp
(
− (ax + b/x)/2

)
. dim denotes the dimension

of the set, and Ci, j are the prior local variance parameters (the elements in (4) without an overall shrinkage
parameter).

Step 3: Update the volatility. For the volatility estimation, let ũt = Aut denote the rescaled residuals.
The elements of ũt obey the following process:

ln ũ2
i j,t = ln hi j,t + ln ϵ2

i j,t, i = 1, . . . ,N, j = 1, . . . ,G.

So, together with state equation (2), we have a non-linear and non-Gaussian state space system. To get
the volatility estimates, we use the KSC algorithm, first introduced in Kim et al. (1998) and detailed for
VAR models in Del Negro and Primiceri (2015). We use a 10-state mixture of Normals to approximate the
distribution of non-Gaussian errors ln ϵ2

i j,t. The details of approximation are provided in Table 1 of Omori
et al. (2007).

Step 4: Update the free elements in A. This can be done with the equation-by-equation approach of
Cogley and Sargent (2005) or with the joint approach of Chan (2017). For the latter, letting a denote the
free elements in A, it can be shown that a can be interpreted as the coefficients from the regression:

ut = Kta + et, et ∼ N(0,Dt),
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where Dt = diag(h1,t, . . . , hNG,t), and Kt is given as

Kt =



0 0 0 0 0 · · · · · · 0

−u1t 0 0 0 0 · · · · · ·
...

0 −u1t −u2t 0 0 · · · · · ·
...

...
. . .

. . . · · · · · · 0
0 · · · · · · · · · 0 −u1t · · · −u(NG−1)t


.

This permits drawing a jointly. Given the prior a ∼ N(0,Ωa), the posterior is also Gaussian a|β, h,Φ,Y ∼

N(µa,Ωa), where

Ωa = (Ω−1
a + K′H−1K)−1

µa = ΩaK′H−1u.

This algorithm can be more efficient than the equation-by-equation approach, because a is updated jointly.
However, the band matrix Kt does not have a fixed bandwidth (the number of non-zeros elements increases
with model size). Thus, letting n denote the number of variables in the model, the complexity of this
algorithm is still O

(
n3), and the estimation quickly becomes computationally demanding as the model size

increases. Accordingly, for country-specific models, which are small (n = N = 3), we use this algorithm
to update a. But for multi-country models, which are large (n = NG = 21), we use the algorithm of Cogley
and Sargent (2005) to draw a equation by equation.

Step 5: Update Φ|·. Since we elicit a conditionally conjugate prior, the conditional posterior takes the
same form, which can be shown to be:

Φ|· ∼ IW
(
Q0 + T,W0 +

T∑
t=1

(
log(ht) − log(ht−1)

)(
log(ht) − log(ht−1)

)′)
.

C.2 Algorithm for multi-country VAR with factor shrinkage

Most of the steps of the algorithm for the CC specification follow from the previous section, except that
we have to adapt step 1’s treatment of the VAR’s coefficients. With the transformation, we see that given
θ ∼ N(0,Ωθ), the conditional posterior θ|Y, a, h,Φ is multivariate Normal, N(µθ,Ωθ), with moments:

Ωθ = (Ω−1
θ + Z̃′Σ̃−1Z̃)−1

µθ = ΩθZ̃
′Σ̃−1Y,

where Y, Z̃ are stacked versions of Yt, Z̃t and Σ̃ = diag(Σ1, . . . ,ΣT ).
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C.3 Algorithms for multi-country VARs with hierarchical shrinkage

As in Algorithm 1 in the main text, the MCMC estimation involves 5 steps. The only new step compared
to above is to update the prior variance parameters and associated hyperparameters. We provide details
of the conditional posterior distributions for these parameters. In Section 6.4, we also estimate country-
specific VAR-SV specifications with hierarchical shrinkage and Horseshoe prior. The algorithm follows
exactly the ones described below.

First, consider the Horseshoe prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j |γ

2
j ∼ G

(1
2
, γ2

j
)
, γ2

j ∼ G
(1
2
, λ

)
,

and λ ∼ C+(0, 1). It follows from straightforward calculation that

ω2
j |· ∼ GIG(0, 2γ2

j , β
2
j),

where GIG(p, a, b) denotes the Generalized Inverse Gaussian distribution with pd f given by f (x) ∝
xp−1 exp

(
− (ax + b/x)/2

)
. For the conditional posterior of γ2

j |·, since the Gamma distribution is conjugate
for the Gamma likelihood function, we have that

γ2
j |· ∼ G

(
1, λ + ω2

j
)
.

Updating λ|· follows the same steps as above since the prior admits the hierarchical representation: λ ∼
G
( 1

2 , ξ
2), ξ2 ∼ G

(1
2 , 1

)
.

Second, consider the Normal-Gamma prior:

β j|ω
2
j ∼ N(0, ω2

j), ω
2
j ∼ G

(
aω,

aωκ2

2
)
,

and aω ∼ E(b) and κ2 ∼ G(d1, d2). It follows similarly as in the Horseshoe prior that

ω2
j |· ∼ GIG

(
aω − 0.5, aωκ2, β2

j
)
.

The conditional posterior for aω|· is not available in closed form. We use adaptive Random Walk Metropolis-
Hastings algorithms as in Roberts and Rosenthal (2009) with acceptance probability given by

min
{

1,
p(aω,new)aω,new

p(aω)aω
∏

j

p(β j|aω,new, κ2)
p(β j|aω, κ2)

}
,
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where the marginal prior is given by

p(β j|aω, κ2) =
(√

aωκ2)aω+ 1
2

√
π2aω− 1

2Γ(aω)

∣∣∣β j

∣∣∣aω− 1
2 Kaω− 1

2

(√
aωκ2

∣∣∣β j

∣∣∣),
and K(·) denotes a modified Bessel function of the second kind. At each iteration i, a new value aω,new is
proposed according to

log aω,new = log aω + ϵ j, ϵ j ∼ N(0, σ2(i)
ψ j

). (13)

The variance of the increments is fixed at 1 for the first 50 iterations, and then updated by

logσ2(i+1)
aω = logσ2(i)

aω +
1
iq (α̂ − α∗), (14)

where α̂ is the estimated acceptance probability of current draws and α∗ is the desired acceptance proba-
bility. The parameter q controls the degree of vanishing adaption, which is necessary to make the adaptive
algorithm valid.4 This algorithm leads to an average acceptance rate that converges to α∗. Following Grif-
fin and Brown (2017), we set q = 0.55, α∗ = 0.3. Then updating κ2|· is quite straightforward since it again
follows a Gamma distribution:

κ2|· ∼ G
(
Maω + d1, d2 + aω

∑
j

ω2
j

)
,

where M denotes the number of parameters in each block.
Finally, consider the Normal-Gamma-Gamma prior:

β j|τ
2
j , λ

2
j ∼ N

(
0, ϕ

τ2
j

λ2
j

)
, τ2

j ∼ G(a, 1), λ2
j ∼ G(c, 1),

where ϕ = 2c/(aκ2), 2a ∼ B(αa, βa), 2c ∼ B(αc, βc), and κ2|a, c ∼ F(2a, 2c). We proceed as in Cadonna
et al. (2020). As we use marginalized distributions in each step to improve sampling efficiency, the steps
described below are not interchangeable.

Step a: Update a|·. Use the prior p(β j|λ
2
j , a, c), marginalized w.r.t. τ2

j , to draw a|· via an adaptive
Random Walk Metropolis-Hastings algorithm on z = log

(
a/(0.5 − a)

)
. The variance of the increments is

updated as in the Normal-Gamma case. At each iteration m, letting a∗ be the candidate draw and a(m−1) be

4This means that the variances of increments are fixed as i → ∞. Two conditions are provided in equations (1.1) and (1.2)
of Roberts and Rosenthal (2009). The condition in equation (1.2) in their paper is generally satisfied provided that ψ is bounded
above.
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the previous draw, the acceptance probability is given by

min
{

1,
qa(a∗)

qa(a(m−1))

}
, qa(a) = p(a|·)a(0.5 − a).

Letting m be the number of parameters in each block, log qa(a) is given by

log qa(a) = a
(
− m log 2 +

m
2

log κ2 −
m
2

log c +
1
2

∑
j

log λ2
j +

1
2

∑
j

log β2
j

)
+

5
4

m log a + m
a
2

log a − m logΓ(a + 1)

+
∑

j

log Ka− 1
2

(
β j

√
λ2

jκ
2a/c

)
− logB(a, c) + a

(
log a + log

( κ2

2c
))
− log a − (a + c) log

(
1 +

aκ2

2c

)
+ (αa − 1) log(2a) − (βa − 1) log(1 − 2a)

+ log a + log(0.5 − a).

Step b: Update τ2
j |·. This step is simple, as the conditional posterior is again GIG:

τ2
j |· ∼ GIG

(
a −

1
2
, 2,

λ2
jβ

2
j

ϕ

)
.

Step c: Update c|·. Use the prior p(β j|τ
2
j , a, c), marginalized w.r.t. λ2

j , to draw c|· via an adaptive
Random Walk Metropolis-Hastings algorithm on z = log

(
c/(0.5 − c)

)
. The variance of the increments is

updated as in the Normal-Gamma case. At each iteration m, letting c∗ be the candidate draw and c(m−1) be
the previous draw, the acceptance probability is given by

min
{

1,
qc(c∗)

qc(c(m−1))

}
, qc(c) = p(c|·)c(0.5 − c).
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Letting m be the number of parameters in each block, log qc(c) is given by

log qc(c) = m logΓ(c + 0.5) − m logΓ(c + 1) +
m
2

log c

− (c + 0.5)
(∑

j

log
(
4cτ2

j + β
2
jκ

2a
)
−

∑
j

log(4cτ2
j)
)

− logB(a, c) − (a − 1) log c − (a + c) log
(
1 +

aκ2

2c
)

+ (αc − 1) log(2c) + (βc − 1) log(1 − 2c)

+ log c + log(0.5 − c).

Step d: Update λ2
j |·. This step is simple; the conditional posterior is G:

λ2
j |· ∼ G

(1
2
+ c,

β2
j

2ϕτ2
j

+ 1
)
.

Step e: Update κ2|·. Notice that the prior of κ2 admits the following hierarchical representation: κ2|a ∼

G(a, d2), d2|a, c ∼ G
(
c, 2c

a

)
. Then updating κ2|· involves first sampling from

d2|· ∼ G
(
a + c, κ2 +

2c
a

)
,

then sampling from (m is the number of parameters in each block)

κ2|· ∼ G
(m

2
+ a,

a
4c

∑
j

λ2
j

τ2
j

β2
j + d2

)
.

C.4 Corrected triangular algorithm

Consider an n-variable reduced-form VAR(p) model as in Carriero et al. (2022):

yt = Π
′xt + A−1Λ0.5

t ϵt, ϵt
i.i.d.
∼ N(0, In),

where t = 1, . . . ,T , xt is an (np + 1) × 1 dimensional vector containing the lags of yt and an intercept,
Π = (Π0,Π1, . . . ,Πp)′ is an (np + 1) × n matrix of coefficients, A−1 is a unit lower triangular matrix, and
Λ0.5

t is diagonal with the log of the generic j-th element following a random walk process.
Defining ỹt = Ayt with generic j-th element ỹ j,t = y j,t + a j,1y1,t + · · ·+ a j, j−1y j−1,t, consider the triangular

representation of the system:

ỹt = AΠ′xt + Λ
0.5
t ϵt = A(x′tΠ)′ + Λ0.5

t ϵt,

15



which can be expressed as the following system of equations:

ỹ1,t = x′tπ
(1) + λ0.5

1,t ϵ1,t

ỹ2,t = a2,1x′tπ
(1) + x′tπ

(2) + λ0.5
2,t ϵ2,t

ỹ3,t = a3,1x′tπ
(1) + a3,2x′tπ

(2) + x′tπ
(3) + λ0.5

3,t ϵ3,t

...

ỹn,t = an,1x′tπ
(1) + · · · + an,n−1x′tπ

(n−1) + x′tπ
(n) + λ0.5

n,t ϵn,t,

where π( j) denotes the coefficients of the j-th equation. Clearly, π( j) appears not only in equation j but also
in equations j + 1 through n. Letting z j+l,t = ỹ j+l,t −

∑ j+l
i, j,i=1 a j+l,ix′tπ

(i), for l = 0, ..., n − j, and ai,i = 1,
consider the following system of equations:

z j,t = x′tπ
( j) + λ0.5

j,t ϵ j,t

z j+1,t = a j+1, jx′tπ
( j) + λ0.5

j+1,tϵ j+1,t

...

zn,t = an, jx′tπ
( j) + λ0.5

n,t ϵn,t.

Then, using the above triangular representation, the full conditional posterior of π( j)|· follows immediately
from standard Bayesian linear regression results (assuming that prior means are zero):

π( j)|· ∼ N
(
µπ( j) ,Ωπ( j)

)
,

where

Ω
−1
π( j) = Ω

−1
π( j) +

n∑
i= j

a2
i, j

T∑
t=1

1
λi,t

xtx′t

µπ( j) = Ωπ( j) ×
( n∑

i= j

ai, j

T∑
t=1

1
λi,t

xtzi,t

)
,

with ai,i = 1.

C.5 Algorithms for SSSS prior

The algorithms described in Appendix A.3 of Korobilis (2016) can be easily extended to our case with SV.
Only step 1 has to be modified. In particular, let Y = (y1 · · · yT )′, xt = (1, y′t−1)′, and X = (x1 · · · xT )′,
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and write the model as
Y = XB + U,

where U = (u1 · · · uT )′. The sampler involves the following steps:
Step a: Update vec(B)|·. It can be shown that

vec(B)|· ∼ N
(
Γ × µB,DB

)
,

where

DB =
(
V +

T∑
t=1

(
Σ−1

t ⊗ x′t xt
))−1

, µB = DB

(
vec

( T∑
t=1

xty′tΣ
−1
t

))
.

The diagonal matrix V contains prior variances; details of constructing the indicator matrix Γ can be found
in Korobilis (2016).

Steps b,c,d,e: These follow exactly as in steps 2,3,4,5 in Korobilis (2016).
Steps f,g,h: Update free elements in A, stochastic volatility, and related parameters. These steps follow

the corresponding steps used for the multi-country VAR with the Minnesota-type prior.

C.6 Algorithms for country-specific VAR with hierarchical shrinkage

We follow exactly the algorithms described in Chan (2021). Estimation for the intercept, autoregressive
coefficients, free elements in A, and stochastic volatility is very similar to the algorithms used in this paper.
It is worth mentioning that, as in Chan (2021), the model has been first transformed to structural form, and
then estimation is performed equation by equation. For hyperparameters related to the Normal-Gamma
prior, since a slightly different parameterization is used there, the updating of hyperparameters is slightly
different. The conditional posterior for ψi, j|· is also GIG, but with a slightly different parameterization.
An independent Metropolis-Hastings algorithm is used to update νψ|·. We refer the reader to Section 4 and
Appendix B in that paper for more details.

C.7 Algorithms for univariate models

We use the algorithms as described in Clark and Ravazzolo (2015) to estimate AR(p)-SV models. The
steps to draw intercept and autoregressive parameters follow from standard linear regression results. To
estimate stochastic volatility and related parameters, we follow the procedures described in Section 7.1 in
Chan (2017). For the UCSV model, we estimate it in non-centered parameterization and then transform
back to the centered parameterization to perform predictive simulation. Estimation details can be found in
Appendix B in Chan (2018) and in Section 7.2 in Chan (2017).
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D Additional empirical results

Table 1: Comparison of HS-CSH and baseline HS: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.229 -1.999 -0.623 -1.236 -1.836 -2.761 Mean -0.204 0.087 -1.018 -0.759 0.610 0.933

Median -1.053 -2.029 -0.610 -1.183 -2.209 -3.580 Median 0.325 0.264 0.287 0.077 0.349 0.639

Min -6.251 -7.402 -3.926 -5.022 -6.251 -7.402 Min -8.772 -7.086 -8.772 -7.086 -6.593 -5.164

Max 3.282 3.078 2.128 2.284 3.282 3.078 Max 10.556 10.025 3.519 4.223 10.556 10.025

% > 0 32.143 28.571 35.714 28.571 28.571 28.571 % > 0 57.143 55.952 54.762 52.381 59.524 59.524

%p <= 0.05 0 2.381 0 2.381 0 2.381 %p <= 0.05 0 1.190 0 2.381 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 7.951 6.192 3.960 2.191 11.942 10.193

Median 6.169 5.192 3.180 1.804 10.788 8.174

Min -4.416 -5.618 -4.416 -5.618 0.337 0.383

Max 28.668 23.514 21.308 14.492 28.668 23.514

% > 0 90.476 86.905 80.952 73.810 100 100

%p <= 0.05 8.333 10.714 2.381 2.381 14.286 19.048

Notes: ”HS-CSH” is the multi-country VAR model in which all the parameters related to CSH restrictions follow the same Horseshoe prior specification.
The table provides summary statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics
include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the
competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone
(2020).
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Table 2: Comparison of HS-A and baseline HS: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.592 -3.194 -1.386 -2.642 -1.798 -3.746 Mean -2.180 -1.956 -2.282 -2.190 -2.079 -1.721

Median -1.626 -3.109 -1.160 -2.488 -2.434 -4.376 Median -2.037 -1.909 -1.173 -1.290 -2.533 -3.450

Min -7.806 -12.719 -7.806 -10.600 -7.287 -12.719 Min -12.187 -10.419 -12.187 -10.419 -9.568 -8.276

Max 4.116 3.688 2.804 3.197 4.116 3.688 Max 9.258 10.280 3.404 4.276 9.258 10.280

% > 0 33.333 28.571 33.333 28.571 33.333 28.571 % > 0 28.571 25 28.571 21.429 28.571 28.571

%p <= 0.05 1.190 4.762 2.381 4.762 0 4.762 %p <= 0.05 0 0 0 0 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 10.697 10.033 4.370 3.699 17.023 16.367

Median 9.769 10.128 4.496 3.532 17.011 16.445

Min -7.071 -10.052 -7.071 -10.052 6.479 7.464

Max 25.761 26.416 17.567 15.201 25.761 26.416

% > 0 90.476 86.905 80.952 73.810 100 100

%p <= 0.05 21.429 38.095 9.524 23.810 33.333 52.381

Notes: ”HS-A” is the multi-country VAR model in which all the parameters follow the same Horseshoe prior specification. The table provides summary
statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics include average, median,
minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing models are
statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone (2020).

Table 3: Comparison of HS-E and baseline HS: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.154 -2.286 -1.212 -2.101 -1.095 -2.470 Mean -1.756 -2.309 -2.332 -2.680 -1.181 -1.939

Median -1.454 -2.461 -1.105 -1.768 -1.608 -2.767 Median -1.109 -2.087 -1.109 -2.370 -1.036 -1.991

Min -7.244 -10.132 -7.244 -9.228 -6.265 -10.132 Min -13.790 -15.398 -13.790 -15.398 -9.156 -10.805

Max 4.161 3.987 3.126 3.642 4.161 3.987 Max 11.063 9.459 3.316 4.634 11.063 9.459

% > 0 33.333 28.571 38.095 28.571 28.571 28.571 % > 0 26.190 26.190 28.571 30.952 23.810 21.429

%p <= 0.05 0 1.190 0 2.381 0 0 %p <= 0.05 0 3.571 0 7.143 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 11.280 10.700 4.059 3.313 18.501 18.087

Median 10.568 10.984 2.596 2.770 16.977 17.372

Min -7.634 -11.672 -7.634 -11.672 6.737 7.870

Max 34.537 28.239 25.968 19.593 34.537 28.239

% > 0 83.333 82.143 66.667 64.286 100 100

%p <= 0.05 13.095 20.238 2.381 9.524 23.810 30.952

Notes: ”HS-E” is the multi-country VAR model in which all the parameters in each equation follow the same Horseshoe prior specification. The table
provides summary statistics for the performance of this alternative model compared to the multi-country HS specification. Descriptive statistics include
average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing
models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone (2020).
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Table 4: Comparison of Horseshoe priors with and without SV: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -1.852 -3.445 -0.893 -2.525 -2.811 -4.364 Mean -22.974 -19.720 -11.820 -12.712 -34.127 -26.727

Median -1.962 -3.434 -1.123 -2.603 -2.722 -4.309 Median -16.394 -15.737 -7.538 -8.186 -24.002 -19.492

Min -9.097 -11.549 -6.032 -8.837 -9.097 -11.549 Min -98.999 -69.770 -56.606 -52.922 -98.999 -69.770

Max 5.197 4.580 5.197 4.580 2.362 0.835 Max 4.018 0.548 4.018 0.548 -7.184 -7.248

%> 0 28.571 19.048 38.095 28.571 19.048 9.524 %> 0 4.762 1.190 9.524 2.381 0 0

%p <= 0.05 3.571 5.952 0 2.381 7.143 9.524 %p <= 0.05 15.476 15.476 16.667 16.667 14.286 14.286

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean -9.429 -13.515 -12.149 -20.332 -6.709 -6.698

Median -7.592 -6.062 -8.375 -14.525 -7.590 -2.534

Min -57.608 -73.394 -57.608 -73.394 -27.100 -47.395

Max 10.402 14.686 9.970 11.987 10.402 14.686

%> 0 26.190 28.571 21.429 14.286 30.952 42.857

%p <= 0.05 11.905 28.571 16.667 42.857 7.143 14.286

Notes: The table provides summary statistics for the performance of the alternative model with SV compared to the multi-country HS specification with
SV. Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in
which the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics
as in Coroneo and Iacone (2020).

Table 5: Comparison of Horseshoe priors with expanding versus rolling windows: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.095 0.342 1.229 0.707 0.960 -0.023 Mean 3.268 1.872 3.989 2.046 2.546 1.698

Median 0.849 0.160 1.102 0.528 0.759 0.002 Median 3.006 1.788 3.533 2.128 2.742 1.208

Min -1.632 -1.930 -1.632 -1.930 -0.688 -1.772 Min -1.479 -3.063 -1.318 -2.326 -1.479 -3.063

Max 7.256 4.464 7.256 4.464 3.948 3.023 Max 10.905 5.850 10.905 5.495 7.575 5.850

%> 0 83.333 54.762 80.952 59.524 85.714 50 %> 0 92.857 85.714 95.238 88.095 90.476 83.333

%p <= 0.05 3.571 4.762 7.143 9.524 0 0 %p <= 0.05 0 0 0 0 0 0

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.928 1.330 0.539 -0.077 3.317 2.738

Median 1.435 0.461 -0.338 0.043 3.237 1.713

Min -6.350 -6.095 -6.350 -6.095 -2.769 -4.450

Max 12.168 12.503 9.226 9.878 12.168 12.503

%> 0 59.524 57.143 47.619 50 71.429 64.286

%p <= 0.05 10.714 4.762 7.143 0 14.286 9.524

Notes: The table provides summary statistics for the performance of the HS model estimated with a rolling approach relative to the paper’s baseline
recursive approach. Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the
percentage gains in which the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-
smoothing asymptotics as in Coroneo and Iacone (2020).
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Table 6: Comparison with univariate models with HS baseline featuring SV: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 0.535 0.732 0.290 0.396 0.779 1.067 Mean 1.279 3.874 0.252 0.927 2.306 6.822

Median -0.513 -0.461 -0.342 -0.406 -0.750 -0.744 Median 2.022 3.073 1.740 1.213 2.572 7.117

Min -3.642 -4.655 -3.616 -3.813 -3.642 -4.655 Min -13.484 -7.475 -13.484 -7.475 -11.329 -3.670

Max 7.571 10.119 5.646 6.972 7.571 10.119 Max 13.247 17.693 6.875 7.681 13.247 17.693

%> 0 38.095 40.476 40.476 42.857 35.714 38.095 %> 0 70.238 77.381 59.524 64.286 80.952 90.476

%p <= 0.05 13.095 14.286 11.905 7.143 14.286 21.429 %p <= 0.05 0 8.333 0 0 0 16.667

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 8.982 7.799 8.442 7.370 9.522 8.227

Median 10.504 10.207 8.651 8.779 14.056 16.663

Min -19.264 -28.167 -15.896 -22.757 -19.264 -28.167

Max 28.698 29.027 24.232 25.927 28.698 29.027

%> 0 78.571 63.095 85.714 69.048 71.429 57.143

%p <= 0.05 11.905 25 9.524 23.810 14.286 26.190

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the multi-country VAR-SV model with the Horseshoe
prior (the paper’s HS specification) relative to univariate models with SV. For output growth and the interest rate, we use an AR(p)-SV model, with p = 2
for output growth and p = 4 for the interest rate. For inflation, we use an unobserved component model with SV, as in Chan (2018). Descriptive statistics
include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which the forecasts from the
competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone
(2020).

Figure 1: The figures present 1-step-ahead short-term interest rate forecasts for all G7 countries. The blue line and shaded areas are point forecasts and
associated 95 percent forecast intervals. The black line shows the true values.
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Figure 2: The figures present 12-steps-ahead short-term interest rate forecasts for all G7 countries. The blue line and shaded areas are point forecasts and
associated 95 percent forecast intervals. The black line shows the true values.

Table 7: Directional forecast: 1-step-ahead changes in output growth

CAN DEU FRA ITA JPN UK USA

HS -0.380 6.715 2.508 5.870 7.556 8.174 9.225

(0.648) (0.000) (0.006) (0.000) (0.000) (0.000) (0.000)

CVAR -2.183 0.421 -2.928 -2.307 -2.318 -1.668 -3.797

(0.986) (0.337) (0.998) (0.990) (0.990) (0.952) (0.999)

Notes: This table presents test statistics and associated p-values for directional predictive performance of 1-step-ahead changes in output growth from
multi-country VAR-SV model with Horseshoe prior and single-country VAR-SV benchmark. The test statistics are computed according to equation (6)
in Pesaran and Timmermann (1992).
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Table 8: Comparison with hierarchical country-specific VARs featuring SV: HS prior versus Chan (2021), descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.778 2.238 1.525 1.924 2.032 2.552 Mean 2.944 3.462 1.520 2.027 4.369 4.896

Median 1.947 1.876 1.412 1.737 1.951 2.556 Median 2.174 2.881 0.924 2.124 4.364 4.747

Min -3.041 -3.547 -3.041 -3.547 -1.975 -0.621 Min -2.281 -1.249 -2.281 -1.249 -1.583 -0.724

Max 6.223 6.509 6.223 6.509 5.940 6.200 Max 9.802 10.208 6.099 6.701 9.802 10.208

%> 0 79.762 84.524 83.333 85.714 76.190 83.333 %> 0 80.952 86.905 76.190 83.333 85.714 90.476

%p <= 0.05 17.857 14.286 11.905 11.905 23.810 16.667 %p <= 0.05 1.190 22.619 2.381 11.905 0 33.333

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 9.936 9.228 8.174 7.606 11.699 10.851

Median 11.195 10.659 8.529 8.511 14.053 13.219

Min -0.939 -0.742 -0.939 -0.742 1.082 -0.365

Max 20.896 21.690 20.896 17.718 20.696 21.690

%> 0 97.619 90.476 95.238 95.238 100 85.714

%p <= 0.05 30.952 30.952 11.905 14.286 50 47.619

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the hierarchical shrinkage in the country-specific VAR-SV
model with the Horseshoe prior (the paper’s HS specification) relative to the hierarchical shrinkage with the Normal-Gamma prior as in Chan (2021).
Descriptive statistics include average, median, minimum, maximum, percentage of cases in which gains are above 0, and the percentage gains in which
the forecasts from the competing models are statistically different according to the Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in
Coroneo and Iacone (2020).

Table 9: Comparison of country-specific VAR-SV and baseline multi-country VAR-SV with HS: descriptive statistics for all horizons

All horizons h ⩽ 6 h > 6 All horizons h ⩽ 6 h > 6

Output growth RMSFE CRPS RMSFE CRPS RMSFE CRPS Inflation RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.134 1.341 1.537 1.758 0.731 0.924 Mean 1.429 2.286 0.825 1.189 2.034 3.382

Median 0.775 1.152 1.064 1.201 0.617 0.968 Median 1.964 2.600 1.951 2.344 1.964 3.497

Min -4.553 -3.130 -4.553 -2.116 -2.354 -3.130 Min -13.569 -10.703 -13.569 -10.703 -11.219 -9.106

Max 5.461 5.745 5.461 5.745 3.937 5.032 Max 13.926 15.588 7.518 8.836 13.926 15.588

%> 0 72.619 73.810 85.714 80.952 59.524 66.667 %> 0 78.571 75 73.810 69.048 83.333 80.952

%p <= 0.05 3.571 8.333 7.143 16.667 0 0 %p <= 0.05 4.762 15.476 0 4.762 9.524 26.190

Interest rate RMSFE CRPS RMSFE CRPS RMSFE CRPS

Mean 1.627 1.764 -0.253 0.435 3.506 3.093

Median 1.030 3.074 -1.630 2.123 3.445 4.184

Min -12.774 -16.290 -11.779 -15.435 -12.774 -16.290

Max 19.525 20.786 18.605 20.046 19.525 20.786

%> 0 55.952 60.714 38.095 57.143 73.810 64.286

%p <= 0.05 23.810 33.333 7.143 23.810 40.476 42.857

Notes: This table presents descriptive statistics on comparisons of forecasting performance for the country-specific VAR-SV model and multi-country
VAR-SV model with the Horseshoe prior (the paper’s HS specification). Descriptive statistics include average, median, minimum, maximum, percentage
of cases in which gains are above 0, and the percentage gains in which the forecasts from the competing models are statistically different according to the
Diebold-Mariano (1995) test with fixed-smoothing asymptotics as in Coroneo and Iacone (2020).
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Table 10: Loss function levels for the benchmark CVAR specification

RMSFE CRPS

Output growth h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 2.319 2.712 2.637 2.647 1.245 1.466 1.419 1.402

DEU 3.592 3.595 3.569 3.470 1.832 1.805 1.798 1.764

FRA 1.630 2.068 2.116 2.144 0.892 1.115 1.134 1.149

ITA 2.539 2.985 2.964 2.935 1.335 1.580 1.553 1.515

JPN 4.185 4.167 4.156 4.251 2.208 2.187 2.159 2.261

UK 2.070 2.542 2.509 2.534 1.080 1.311 1.282 1.287

USA 2.335 2.548 2.594 2.542 1.266 1.364 1.393 1.367

Inflation h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 1.870 1.722 1.816 1.809 0.998 1.006 1.060 1.085

DEU 1.140 1.277 1.377 1.376 0.663 0.743 0.814 0.794

FRA 1.118 1.410 1.439 1.456 0.618 0.783 0.848 0.875

ITA 0.934 1.498 1.690 1.777 0.503 0.830 0.946 1.005

JPN 1.652 1.797 1.846 1.858 0.891 0.978 1.015 1.023

UK 0.982 1.215 1.384 1.358 0.542 0.701 0.778 0.813

USA 2.151 2.227 2.223 2.193 0.988 1.102 1.185 1.160

Interest rate h = 1 h = 4 h = 8 h = 12 h = 1 h = 4 h = 8 h = 12

CAN 0.474 1.327 2.130 2.588 0.231 0.704 1.187 1.502

DEU 0.323 1.068 1.795 2.202 0.162 0.589 1.083 1.374

FRA 0.416 1.298 2.083 2.445 0.192 0.675 1.182 1.419

ITA 0.461 1.502 2.518 3.190 0.234 0.777 1.393 1.817

JPN 0.177 0.740 1.342 1.577 0.068 0.278 0.536 0.676

UK 0.418 1.233 1.884 2.289 0.189 0.630 1.012 1.295

USA 0.353 1.188 2.076 2.644 0.173 0.648 1.205 1.588
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