Online Appendix: Local GMM estimation for
nonparametric time-varying coefficient moment
condition models

The online appendix is organized as follows. Section [A] provides proofs of Lemma [I} Theo-
rem I and Corollaries [I|and 2] Section [B|presents auxiliary results and their proofs.

Notation: ||-|| is the Euclidean norm. [|-[|, is the L, norm. |||, is the spectral norm of a matrix.
x, = O(y,) states that the deterministic sequence x, is at most of order y,. x, = O,(y,) states
that the vector of random variables x, is at most of order y, in probability, and x, = 0,(y,) is of
smaller order in probability than y, . The operator L denotes convergence in probability, and 4
denotes convergence in distribution. We use C for a generic positive (vector) of constant(s) when

convenient. o(A) denotes the o-algebra generated by a collection of sets ‘A.

A  Proof of main results

A.1 Proof of Lemma/(l

Proof of (i). By Triangular inequality,

<
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(6)) can be obtained using

max ||§T’,(6t)|| < max ||M(T13(9,)|| + max ||M(T%;(9,)||.

1T ISNAVA ’ I<i<T

It follows immediately from Lemma [BI|(1b) that, for any £ > 0, p > 2,

max [MD©)|| = 0,((Th) " 1og"> T + (T?b)"/P(Tb)"™).

I<i<T

Under Assumption [3.5(ii), for sufficiently small & > 0, it holds (7%b)"/?(Tb)*~' < (Th)™'/, this
implies that

max || M3)(0,)|| = 0,((Th)™"/* \flog T).
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For M (2)(0,) we have

[IZAGIE TbZk,tllE(gxe,)) E(g0))]] < TbZkﬂllE@j(@») E@@)  @AD

By mean-value theorem, we have

g/(6) = g(6)) + ag d (.- ).

where 6, lies between 6, and ;. Then, by continuing from (A.T), we have

1 T
|6 -6/ < T_Z‘ ( ) fK(u)du = 0(b).

This is because max <7 ||E (8gt(6,)) < oo (Assumption | and the fact that continuously dif-

T
M) < =k,
J:l

agj(él)
e

00"
ferentiable of 6(-) on [0, 1] also implies that it is Lipschitz continuous. This completes the proof

of (6).

(5) can be obtained similarly by noticing that

max [[g7, (@) < max [| M) + max [|M7@)]

Then, the results follow from Lemma[BT|1a) and Lemma BT|2a).
Proof of (ii). Write

T T
; kig;(6) = \/—_ Z (2000 - 8,(0)) + g,(0)))
T 1 T
\/—_ Z (2000 - 2,(0)) + N ; kirg(6))
= BT,t + Vr Tt

We first show that
VT,Z i> N(O’ VOWI) )

where W, = Var (g,(@t)ﬂ We will proceed by assuming m = 1, since the case when m > 1 follows
immediately from Cramér—Wold device.

Since g,(6;) is a martingale difference sequence (M.D.S.), by the central limit theorem (CLT)

lw, depends on 6, but we write W, for convenience, and change the notation to W,(-) when needed.



for M.D.S. (e.g. Theorem 3.2 in Hall and Heyde (1980)), we need to verify that

o Z K2820) — voW,, (A.2)
max Lkﬁgj i (max tg HC, )) (A.3)
i | VTb j el
Proof of (A.2)). Write
szz g0) = = Z (£0) - E(270))) ZT] E(g56))
Th & Th J J - J

— iy @
=Jr tr-

Observe that g2(0 )—E (g?(ej)) also satisfies Assumptions ii) and Then, by Lemma
1)(a) we have |](l)| =0, ((Tb)‘m) = 0,(1). For j(TZ), we have

1 « 1 <&
7] < = D @) - B0 + I D K E(816))
- 2
(21) (22) '

=Jjr tir .

It follows by Assumption [3.4(i) that

o0 < Tb Z ( ) fK2(u)du = O(b),

where the approximation follows from the Riemann sum approximation of an integral. For j;

(22)

by applying mean-value theorem, we have (as Th — o0)

T
- s S0 3 {5 -0

_ agt(gt) Q) lj— 1
_VOW,+T—b;k§, (,(9) ] ( - )

=voW, + O(b) = voW, + o(1),

where the second equality follows from Taylor series expansion of §; around 6,. This established
(A.2).

Proof of (A.3). If Assumption [3.2] holds, by Theorem 12.10 in Davidson| (1994), we have
E [g?(ej)ﬂ (|g.,-(6.,-)| > \/Tbg)] — 0 as Th — oo. Together with the fact that (7h)~! Z]T:l k?t =



O(1), we have, as Th — oo,

P (max
j

1
ﬁkﬂg,- ; >e) <& XTh)™" Z gJ(H)]l (OE \/T_bs)]—>

for any & > 0. This establishes (A.3).

We next move on to the analysis of (Th)~!/ 2BTJ. By mean-value theorem, we have
1 &
(Th)*Br, = — Z (2560 - 2;6)
1 dg/(6)
=75 Lhigg (=0)

1 « agj(ét) agj(ét) (1) |] - t| 08}(@ w (lj—1l
=— ) k| == —-E 0 k,E oL ——
Th Z ”( o0’ o0 ! " Tb Z it 0y | T

where the third equality follows again from Taylor series expansion of 6; at 6,. For B(Tl:, since

(’ig});;,@,) -F (6g;9 ’)) also satisfies Assumptions|3. ii) and by Lemma 2)(a), we have |B(T; =
0,(b) = 0,(1). Following similar analysis as for (A.2), we have

1 « 0g (ét) 6gt(5t) 6gt(5t) lj— 1
@ _ 1 ) J _ YUs\Yt) Yo\t OON BV
b= 7% Zk”(E( o6 ) E( 06’ )+E( o )9' ( T )

J=1

dg,(6,) d
_ NAPORS
=0,(0b) + E( 50 ]@ Th E kﬂ( ) 0,(b).

J=1

This implies that Br, = 0, (T"/26*2).
A.2 Proof of Theorem|]]
The local CU-GMM estimator is defined by (3)):
0 = argmin Q..
where the criteria function Q, r is given by

0.r(0) = 25 (OW1s(OF1.,(0).



We first prove the consistency of the estimator. Let

0,(6) = (E[gt(m]) (o Wi(6)™ (E[gtw)]),
where vy = f K?(u)du and W,(6) = Var(g,(6)). In view of Theorem 2.1 in Newey and McFadden
(1994), it is sufficient to verify that
(i) © is compact (assumed in Assumption [3.3);
(i) Q/(0) is uniquely minimized at 6, (implies by Assumption [3.3);
(i) Q,(0) is continuous in ® (implied in Assumption [3.2)));

(iv) Uniform consistency:
max |Q,.7(6) ~ Q,(6)| = 0.

Thus, it remains to show (iv), which follows from

max [g7,(6) - E(s.(6))]| = 0, (A4)
max |[Wy,(0) - v;' W, @) 5 0. (A.5)
6e® ’

(A.4) is exactly (5) in Lemma [I[i). For (A.5), notice that

max [Wy,(6) = v5' W, ©)]| < max IW,@)I5) max [voW,(®) - L v max [Wr,@)

Recall that, for each 0 € O,

T
Wri0) = = Z (2:0)2,0) - E (2,(0)¢/(0))) + Z E (2/(0)g/(9))
=
(1) (2)
- WT t(g) T 1(9)
Following same arguments as used for (A.2), we have maxgce ”WT ,(G)H (Tb) 1/ 2) W(T?(H) =

voW,(6) + o(1). This further implies that maxyce ||v0W,(9) - WT,,(Q)”SP = Op ((Tb) 1/2) = 0,(1).

Together with Assumption (which implies that both maxgce ||W,(0)||S_I} and maXgee ||WT7,(9)||_l
are O,(1)), we have
—1 _ _
max W70 = v5' W, @) = 0,1, (A.6)

which establish (A.5).



3Qz T(Hz

By expanding the first-order condition of —=:— = 0 around 6,, we have

30,16 N 00,16,
00 0000’

( —6) =

where 6, lies between 6, and 6,. By rearranging terms, we have

azQ,,T(éo)—laQ,,T(e,)

0, -6, =—
r ( 5000’ 00

_(62Qt,T(9t>)—laQ,,T(0,> .\ [(GZQI,T@))A ~ (ath,T@))—llaQt,T(m

0600’ 00 0606’ 06000’ 06

We need to show that

(ath,T(et))“ ) (02Q,,T@>)‘1

2% I\ 9000 9000’ = op(D),
sp
0*0.7(6,)
FrZN — o ().
1<t<T 0600’ o P ( )

Then, uniform consistency rate and asymptotic normality are determined by aQ’T(H’

(A.7)

(A.8)

(A.9)

. Thus, we

need a detailed expansion for the first and second order derivatives for the crlterla functlon O r.

Let us first compute the score:

80,7(6,) L g6,
96 ‘2[szk” a6 ] Tf(e’[TbZkﬁgf(ef]

+ (A28, Ara(6))
= Al,t(gt) + Az,z(et)~

The ¢,th elements in A, ,(6,) is given by

aW 1( t)
Az () = [ Zkﬂg]( t)] T—[[Tb Z kj:g(6:) ]

1

where

— 1
aV‘/T,t(et) - 8 Tz( 1) —

-W. (6 0
(99[1 T,t( t) 60[ Tz( t)

1

(A.10)



We will show that

max [0 = Op(b + (Tb)™'? yiog T), (A.11)
max |4y, (6)] = 0,(1), for £1=1,2,---.d, (A.12)

which implies that the dominating term is A, ,(6;), while A,,(6;) is smaller order term.
Proof of (A.12]). We first establish a bound for (A.T0)). First, recall that

Wri(6) = — Z 5,8,(6)8/(6).

Then, using similar steps as in the proof of (A.5) and applying Lemma BI|(1)(b), we obtain

max ‘W;},(Gt) -V !

I<i<T

= 0,((Th)? \flog T + b) = 0,(1). (A.13)

Next, we consider

OWr,(6,) 38 () y 08,0y ,
azgl B sz (’(9’ : )+( 0, )gj(g’))'

Write

1 < dg (6, , g6\ 1 —
75 2yt = 75 2o 5| - wior (%) oy Dyt
= '

Observe that any elements in g ](0,)(65"(9’)) (g 16, (6g’(6’)) ) satisfy Assumptions , by
Lemma [BI[(1b), we obtain

max
1T

Z (g,(e,)( ) - [gj(e,)( %, ’))])l‘ = 0,((Th)*flog T) = 0,(1).

Next, notice that

max ||W ” max = sz[ _(9)(0gj(6t)),]
1<i<T tdi|| = 1<i<T Tb E_ | 840 60{)1
1 Y ag (0) ’
T Zl {EIEB; . 81(9;)( (9:95,[ ) "
1 ZT dg:(6)||,12
T J=1 fEfE} E”g](QI)H} {H<lza%T EH 516’f1t } < 0o,




which follows from Assumption This implies that

OWr.(6,)

ek Woa, + W,y +0,p(1),

which holds uniformly over ¢. Thus, we have, by continuing from (A.10)),

—

oWy (6,)
max (|——————
0,

I<i<T

<’ max IWi(6)II5, m max [[W,(6)I™" + 0,(1) = O,(1).

1\\

IWr,(6)
06,

1\ \T

By Lemma [I[i), we have

1 o -1/2
max —bZ;kj,gj(e,) = 0,(b + (Tby"?\logT) = 0,(1).
]:
This implies (A.12)
1 OW7,(6:)
T \"t
max [As,,,(6)] < max —b;kﬂgj(et) ma | —se—| max Zkﬂgj(e, +0,(1) = 0,(1).

Proof of (A.TT)). Define

T
0gj(0t (9gj(Q,)
Ooi =75 Zk”( 0 £| o6 I}
Wp, = Wos(6) —vg' W.'(0).

We have shown in (A.T3)) that max,<r ||WDI|| = 0,(1). Similarly, observe that any (a, b)th
aa/ 2 also satisfy Assumptions L by applying Lemma |B1(1b), we obtain

elements in

max (|Gp,| = 0,((Tb)"> \log T) = 0,(1).

1<i<T

Following similar steps in the proof of (A.2)), we could show that

ag](el 0g:(6,)
bZk,,E ] = E[755 ] + oD,



Define G, = E [6%,29, ] Let us rewrite A ,(6,):

T T
AwO) = v G, (= Z K ,60) + G W (- Z kiig5(0)

e Val -
+v GDtW

M*}

1 1 4
e ]tg](et + G;WDt e kjtg](et
Tbh Tb ;

j=1

Clearly, the dominating term is the first one. Then, we have

max [|4,(6)]] < (max|Gil,,) vi' max|[WA@)Il;, (max

1T

Z k;ig,(6)

Consider now the second order derivatives of the criteria function:

0A2.14(6)
a ),
azQ”T(ef) _ [t?Au(@) . 3A1,;(9z)] 9
0000’ - 00, 00y laxd ({}Az;i @
a0 dxd
We will show that
0A (0
1( t) - Op(1)9 52 = 17 e ’d’ (A‘14)
1<i<T s
s8]
max | — | = o,(1), 6=1,---,d. (A.15)

Proof of (A.14)). Consider

T

0A,,(6,) _ 1 g gj(gl‘)
96, [Tb Zk” 00,,00 W7.(0) Th Zkﬂgfwf

1 &, 8gi6) GWTt(H,)
— Nk kg i(6,)
Th Z I 96,,00 ] a6, [Tb Z 1816 ]

Jj=

1 v (6, 1 & 8g6
Yy W) =— >k
" TbJZ:: f’ae aef] i ’)[sz ”aegzaef]

J=

= Bll,t(gt) + BlZ,t(gt) + Bl3,t(9t)-

We need to find bounds for the above three terms. First, we write

L, Pe0) 1 <, (800 (0216, 8,6,
ﬁ; 7 80,,00" T_Z J’(ae a0’ E(aeﬁae)’)) szk” (aefae’)'

)+o,,(1) = 0,(b+(Tb)"* log T).



Following again similar steps as in the proof of either Lemma([I{i), we have, ¥¢,,

max
1<i<T

1, (0°8,0) 62g,(9t)
— § k: Tb “2 = 0,(1),
Th & ”(aefzaef 86 09' (67 Viog T) = 0,(1)

and

gj(et 98,6,
k; =E + o(1).
Tb Z i ( 36,,00 ) (69[289' o)
Finally, observe that both By, ,(6,) and Bj,,(6,) involve % ZJTZI k;:gi(6,), following the arguments
used to establish (A.TT]) and (A.12)), it is straightforward to verify that

max || B11,(6)]| = 0,(1),  max [[Bio. (6 = 0,(1).

1T

Clearly, the dominating term is Bi3,(6,): Vs,

azgt(@) -1 azgt(@)
max [[B1,(6)] < max E(—%ag, v max ax |[Wi(6)Il5, max ||E 36,90 )| ForD = 0D
Summing up, we get: V{5,
AA, (6
ma || A1) = 0,(1).
1T >

Proof of (A.15)). Consider

— |
0Az.0,.(6,) 1 "W 0D 1 & 0gi(6)
el o k.o.(0,) ——"— Jo. —2
06 [Tb; 1810 | =4, TbZJ " oe

+|A21.14(6;) -+ 'A2,d,1,t(0t)] )
1xd

where a typical element Ay ¢, 1,(6;), €4 = 1,2,--- ,d is given by

W (6)
Az, 1.4(0,) = [ ijtgj( t)] 89€T6t€€t [Tb Z k]tgj(gt ]

Since both elements above involves 7 3.%_, kg ;(6,), similar arguments as above leads to (A-T3),

which concludes the claim. Again, by triangular inequality, we establish (A.9):

< max |[B1(6),, + max [[B.(6)

1<e<T

= 0,(1).

8°0,1(6)
9000

1<t<T
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We now move to (A.8):

-1 -1

0°Q.1(6))
0000’

Q. 1(6,)
0006

Q. 1(6,) B 0,16,
0006’ 0006’

62Qt, CANS 62Qt, (ét) -1
(aoe )~ a0 )

06000’ 0006’

We need to show:

sp sp sp

62 Qz,T (91) _ 82 Qt,T (ét)

=o0,(1),
1@<t ||~ 0000 seor ||, ~ oV
— -l
8 0:.r(6)
| aeae || T O

These bounds follow immediately by letting 6, N 0, uniformly over ¢ (by the uniform consis-

tency of §,) and (A.9).
Uniform consistency rate. By continuing from (A.7)), we obtain the consistency results:

-1

~ 62 Ql T(GZ‘) 8Qt T(et)
— < - - -
lrgti); O Ht” {22)7(" 06000’ , lsis<T 00 ' +op(l)
= 0,(b + (T logT).
CLT. Based on the above analysis, we can rewrite the estimator as
. P0,.7(0)\ " 90,7(6)
NTb (6, - 6,) = —( — 55 T oD
1 &
= ~(G, (W)™ G)'Gl (vo W)™ = ; kiig (6 + 0,(1).

Then, we have

VTb

R P L1
6, — 0, + (G; (voW,) ! Gy) lG; (voW,) ! T_b Z kjt (gj(gj) - gj(et))]

=1

= —(G, (W) ' G)'G, (W)™ kiyigi(0,) + 0,(1).

1 &
Vi &
By Lemma [I[(ii), together with Slutsky’s theorem, we obtain

VTb (8, - 6, - b ") -5 N(o, Vo (G;W[‘G,)_l),

where u; = f uKu)du and vy = f K*(u)du. 951) is the first order derivative of 6,. G, and W, are



given by
0g:(6,)
00’

G,:E[

[SS—

, W, = Var (g,(@t)).

This completes the proof.

A.3 Proof of Corollary 1

By triangular inequality,
¢ o 92O | LS 92,6
re sz o0 sz "oe

'=Gr +Gryo.

|62 -Gl <

In the previous section, we have shown that ||GTJ,2|| = 0,(1). For Gr,, notice that, by mean-value

theorem,
o (10200 dg@)| 1 G, (|86
G < S AN < — k: Z O ,
[Grall < TbZ " oo o0 Tb; "\ 86,00 |
which holds for all £ = 1,2,---,d. Since maXgee MaxXi<<r H ;9[80, < oo and by uniform

sp
consistency we have that max<<r ||0t - 9,” = 0,(1). This completes the proof.

For Wy, by triangular inequality,

||WT,z - VOWt” <

b Z kilgj(gt)gj(gl Tb Z K2 th(H,)g (0,) —voW;
= WT,t,l + WT,t,Z-

In the previous section, we have shown that ||WT,,,2|| = 0,(1). Following similar analysis as for

Gr..1, we could show that ||WTJ,1|| = 0,(1). This completes the proof.

A.4 Proof of Corollary 2

Consider the following decomposition of Vr,:

12



.- /200 P 1 < R
Vi, = (WTj/z _ Voth 12 VOI/ZW, 1/2) _Tb Z kingi(6))
j=1

2 _ 7 R
- VOI/ZW’ R \/_ Z k/’gl(gf) + W 1/2Gf ( (G W lG) G ; Tb Z kagj(gt)) + 0p(1)
=

T
=v,"*W, (1, - GUGW G Gw, ) \/—_ Z kg6, + 0,(1)
3 9g(6,)
—1 2vx—1/2 ’ ’Yx7— t
=3 PW (1, - G(GW G W ) = Z (2669 + 0 6))) +0,(1)

T
= vy PW (1, - G(GW'G) T Gw) \/_Z k;ig,(0;) + 0,(1),
1

where vy = f K?(u)du. The second equality follows first from the fact that W;}/ 2

1/2

is a consistent
estimator of W, '~ and the expansion of each g.,(Ht) around true g;(6;). The fourth equality follows
from the expansion of each g;(6;) around g;(f;). The last equality follows by the assumption
T'2b%? — 0 so that the smoothing bias vanishes asymptotically.

Recall that val/ w2 1 Z - 1k,tg ,(9) converges to the standard normal distribution and
the fact that 1,, — G/(G,W; 1G ) G’ ! is idempotent of rank m — d. Then, the results follow

immediately from Rao et al. (1973)(p.186).

B Auxiliary results

Definition B1. The random function f(x,6) : R X ® — R satisfies the standard measurability
and differentiability conditions on R X @ — R if

(1) for each 0 € ©, f(-,0) is measurable;
(2) for each x € R, f(x,-) is twice continuously differentiable on ©.

‘We shall obtain the uniform bounds for sums

1 T

S1.0) = = > ki(£(0) = Ef,©). (B.1)
=1
1 :

Ari(0) = = > ki(ES}6) = EF,©). (B.2)
j=1

forr=1,2.

13



Assumption B1. (i) O is compact;

(ii) The stochastic process x, is an a-mixing (but not necessarily stationary) sequence with the

mixing coefficients a(j) satisfying a(j) < c¢’ with0 < ¢ < 1 and ¢ > 0;

(iii) f(x;,0) = f,(0) satisfies the standard measurability and differentiability conditions as in

Definition [BI| and

9£1(6)
o0

max max |fi(f)], < co, max max
0c® 1<i<T 0c® 1<i<T

< 00
p

b

for some p > 2;
(iv) Forany 6 € O, E (f,(0))" = u'(t/T) satisfies the following

. . i1\ .
|:ur(.]/T)_ll (l/T)l <C(%), J’l‘: 1’2’... ,T’

for r = 1,2 and the positive constant C does not depend on j,t and T.

Assumption B2. The weights kj, are computed with a kernel function
j—t
ki, =K(—),
i= KD
where b — 0, Tb — oo. K(u), u € R, is a non-negative continuous function satisfying
Kw < CA+u)™", |(d/dwK(u) < C(1 + )™,

for some C > 0 and v > 3.
Lemma B1. Under Assumptions[BIB2| we have

(1) (a) Forany sequence 1 <t=1t; <T,asb — 0, Tb — oo,

max [S7,(6)] = 0,((Th)™'"?);

(b) IfclT%J“S_1 < b < e,T7° for some 6 > 0, ¢, ¢, > 0, p > 2 as in Assumption @iii}, then
forany e >0, p > 2,

max |S 76| = 0,((Tb)"*log"* T + (I°b)""(Tb)*™").

1T

(2) (a) For any sequence 1 <t =1ty <T,asT — oo,
max [A7(6)] = 0,(b):

14



(b) If ¢y 779 < b < 2T~ for some § > 0, ¢c1,¢c, >0, p>2asin Assumptton@m} then
foranye >0, p>2,
max |ATt(9)| 0,(b).

1<t<T

Proof. (1) (b) is (51) in Dendramis et al.| (2021). For a given 6, (a) is (48) in |Dendramis et al.
(2021ﬂ In the next step, we show that, results in (48) from |Dendramis et al.| (2021) hold
uniformly over 6. We follow the steps in Wooldridge| (1994). Let 6 > 0. Since ©® is compact,
there exists a finite covering of ®, © C Uj.(: 10, where ©; = ©s(6;) is the sphere of radius ¢
about 6; and K = K(9). It follows that, for each & > 0,

P|max |S7,(0)] > (T6)" | < P| max max |ST,(9)| > (Th) ]

1<j<K 6e®

K
< 2Pl sno]> @p%)

We will bound each probability in the above summand. For 6 € ©;, by triangular inequality,

T

1
= Z kji(f1(6) = 11(8)) + f(0)) — Efi(0)) + Efi(6)) — Ef;(0))

NROIE 75 2.

1

T T 1 T
<7 Z Gl F0) ~ 00| + = 3 k00 ~ EF@)] + = > kil B0 ~ Ef0)].
=1 J=1

Observe that f;(-) is differentiable, by mean-value theorem, we have
|£6) = fi@)| < cile ~6)| < 6c;.  |Efi6) ~ Efi0)| <jle - 6| < 6

where . .
o) 05E)
=g ©=E[ =g}

for some 6*, 6™ lie between 6 and ;. Thus, we have

%%§|ST,,(9)|< TbZk,,(cj o)+ Zk,,|f,(e) Efj(e)|+25TbZkﬂc,

1

1 < _
T— Z ki(e; =2 + T— Z kil £16;) — E£;(6;)| + 26C,

2The results presented in Dendramis et al.| (2021)) are expressed in terms of H = Tb.

15



where le Z]T':l kjc; < C, which is implies by Assumption B1(iii). It follows that

[max |S7.40)| > (Th)™' ]<P[ TbZkﬂ(cJ o]+ Zkﬂ|fj(9) Ef6))|
> (Th) e - 256]

g

< [ Th Zk]t(cj C]) Zkﬂ|f](9) Ef](g )| > (Tb)—1/22

where the second inequality follows by letting 6 < 1 such that (Th)™'/?e — 26C < (Tb)™'/%.
Letting 6" = 6™, by applying (48) in Dendramis et al.| (2021)), we have

1 — 1 &
T_b Z kjt(Cj — Ej) = Op((Tb)_l/Z), T_b Z kjt|fj(01) _ Efj(el)| — O,,((Tb)_l/z).
=1 “

Then, since K = K(9) is finite, we can choose T\, such that

_ £
[ TbZkﬂ(c, e+ Zkﬂ|fj(9) Ef@p] > Thy 2| < 2
holds for all T > T,,. Then

P [ rgle%x |S T,,(0)| > (Tb)_ms] < g,

which establishes the results.

(2) Notice that, when ¢ is at the interior point,

1 T
|A7.(0)| < € = Z ( ) f uK(wdu = O(b),
j:

where the approximation follows from Riemann sum approximation of an integral. The
results hold for all ¢. The proof of (2)(a) follows similar as in (1) by utilizing the compactness

of ©, so we omit. The case when 7 is at the boundary point is also similar.
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