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1 Introduction

Many important economic decisions are based on forecasting models that are known to

be affected by parameter instability (Rossi, 2013). It is widely recognized that parameter

instability is a main source of forecast failure. There are ample empirical evidences docu-

menting that failure to take into account parameter instability can lead to poor out-of-sample

forecasting performance. See, for example, Stock and Watson (1996) and Pettenuzzo and

Timmermann (2017) for macroeconomic forecasting, Welch and Goyal (2008), Gargano et al.

(2019), and Borup et al. (2023) for financial return forecasting, and Inoue et al. (2021) and

Oh and Patton (2021) for volatility forecasting.

Motivated by concerns about parameter instability, forecasters often estimate the model

parameters and make predictions using the more recent data. A common approach is to rely

on a fixed number of the most recent observations, known as the “rolling-window” estimation

and forecast scheme. The rolling-window estimator can be viewed as a special case of the local

estimator in nonparametric settings, where a flat kernel function is used. Inoue et al. (2017)

propose a method for selecting the optimal window size in this scheme by minimizing the

conditional mean squared forecast error (MSE). A closely related issue arises with the more

general local estimator, where one must determine the bandwidth parameter and the kernel

function to estimate time-varying model coefficients and construct the forecasts. Giraitis

et al. (2013) propose a method for bandwidth selection in a simple location model with time-

varying mean and provide theoretical justification for their approach. Pesaran et al. (2013)

introduce a weighted least squares estimator for forecasting in the presence of continuous

and discrete structural breaks. Their focus is on selecting weights, which depends on the

nature of the breaks in the model parameters.

This paper proposes a bandwidth selection procedure for the local estimator by directly
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minimizing the conditional expected loss at the end of the sample. The bandwidth param-

eter is central to the bias-variance trade-off and can significantly affect models’ forecasting

performance. Our approach is similar to the rolling window selection studied by Inoue et al.

(2017), and we show that the asymptotic optimality holds when a generic kernel function is

used for local estimation and a general loss function is used for forecast evaluation, which

covers the asymmetric loss functions such as those considered in Laurent et al. (2012). In

addition, we discuss the choice of kernel functions. We show that, when the bandwidth

parameter is set to its optimal value—i.e., minimizing the end-of-sample risk—the one-sided

triangular kernel, rather than the flat kernel, is optimal. This is consistent with the previ-

ous literature (Cheng et al., 1997; Smetanina et al., 2025), which finds that the one-sided

triangular kernel is optimal for the local linear (polynomial) estimators at the boundary

point.

The theoretical analyses are examined through an extensive Monte Carlo study. Using

a linear predictive regression model with various types of parameter instability as the data

generating processes (DGPs), we find that the local estimator with the proposed optimal

bandwidth selection procedure performs well. The gains over the benchmark, which ignores

parameter instability, increase with both sample size and forecast horizon. Moreover, using

alternative kernel functions generally improves forecasting performance compared to the flat

kernel.

We apply the proposed bandwidth selection method to three empirical applications. In

the first application, we examine bond return predictability, a setting in which the forecast-

ing performance of local estimators has not been explored in the existing literature. Our

second application considers yield curve forecasts using the popular “dynamic Nelson-Siegel”

(DNS) model as in Diebold and Li (2006). Finally, we consider real-time inflation forecasts

using a variety of financial variables. We find that our proposed method generally delivers
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statistically significant improvements relative to benchmark methods. In addition, alterna-

tive kernel functions provide further gains compared to the rolling window approach with

optimal window size selection, as developed in Inoue et al. (2017).

The rest of the paper is organized as follows. Section 2 introduces the model setup,

the estimators and their asymptotic properties. Section 3 presents our bandwidth selection

procedure and establishes its asymptotic optimality. Section 4 discusses the choice of kernel

function and presents the derivation of the optimal kernel. Section 5 provides the Monte

Carlo study. Section 6 presents two empirical applications on bond return predictability and

yield curve forecasting. Section 7 concludes. Proofs are provided in the Appendix. Addi-

tional materials, including definitions on certain concepts, the proof of an auxiliary lemma,

further simulation evidence, and an empirical application to real-time inflation forecasting,

are provided in the Online Supplement.

Before proceeding, we introduce the notations. Let ∥ · ∥ denote the Euclidean norm

and ∥ · ∥p be the Lp norm. xn ≍ yn states that xn/yn = Op(1) and yn/xn = Op(1) (or

xn/yn = O(1) and yn/xn = O(1)). The operator p→ denotes convergence in probability,

and d→ denotes convergence in distribution. Et[·] = E[·|Ft] is the conditional expectation

operator, where Ft is the information set available at time t.

2 Estimation under parameter instability

2.1 Model and estimators

We consider time series models of the form

yt+h,T = G(yt,T , Xt,T , εt; θt,T ) with θt,T = θ (t/T ) , (1)

where yt+h,T is the scalar target variable of interest, G(y, x, ε; θ) is a known function, Xt,T

is a vector of predictors, εt is a sequence of errors, and 1 ≤ h < ∞ denotes the forecast
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horizon. θ(t/T ) is a k × 1 vector of time-varying parameters, modeled as a function of the

scaled time point t/T ∈ [0, 1]. This goes along with the model variables yt+h,T and Xt,T

forming triangular arrays, instead of sequences. Under certain regularity conditions on G

and εt, it can be shown that1, for each u ∈ [0, 1], the stationary solution to the model (1)

exists and takes the following form:

y∗t+h(u) = G (y∗t (u), X
∗
t (u), εt; θ(u)) . (2)

The objective is to compute an h-step-ahead forecast conditional on the information set

FT , denoted by ŷT+h|T (θT ), for the actual outcome yT+h. Since θT := θ(1) is unknown, it

must be estimated. We take a nonparametric approach and consider the local estimator.

The local estimator for θT is defined by

θ̂K,b,T = argmin
θ∈Θ

1

Tb

T∑
t=1

ktT ℓt(θ), (3)

where ktT = K ((t− T )/(Tb)), K(·) is a kernel function, ℓt,T (θ) := ℓt(θ) = L(yt+h, ŷt+h|t(θ))
2

is the in-sample loss and b = bT > 0 is a bandwidth parameter satisfying b → 0, Tb → ∞ as

T → ∞. Different specifications of K(·) lead to different types of forecasting schemes. For ex-

ample, ktT = 1 for all t leads to the non-local full-sample estimation θ̂ = argmin
θ∈Θ

1
T

∑T
t=1 ℓt(θ).

When K(u) = 1{−1<u<0}, we effectively use a rolling-window of size ⌊Tb⌋ in the estimation

of the parameter vector θt (Giacomini and Rossi, 2009).

Example 1. Consider the time-varying linear predictive regression model yt+h = X ′
tθt+εt+h,

where εt+h is a disturbance term. Then, under squared error (MSE) loss: ℓt+h(θ) = (yt+h −
1For details, see e.g., Vogt (2012), Dahlhaus et al. (2019), Karmakar et al. (2022) and Kristensen and Lee

(2023).
2According to our model (1), {ℓt,T }t=1,2,··· ,T ;T=1,2,··· forms a triangular array. For brevity, we use the

shorthand ℓt (also yt+h and Xt) throughout most of the paper. In the asymptotic analysis, however, we
revert to the full notation ℓt,T for clarity and rigor.
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X ′
tθ)

2, the local estimator for θT is given by

θ̂K,b,T =

(
T∑
t=1

ktTXtX
′
t

)−1( T∑
t=1

ktTXtyt+h

)
. (4)

Example 2. Consider the time-varying GARCH(1,1) model yt = σtεt and σ2
t = ωt+αty

2
t−1+

βtσ
2
t−1 with εt being a white noise with variance 1. Then, under the QLIKE loss

L(y2t , σ
2
t ) =

y2t
σ2
t

− log

(
y2t
σ2
t

)
− 1,

the local quasi-maximum likelihood estimation of θT = (ωT , αT , βT )
′ is equivalent to minimiz-

ing the in-sample local QLIKE loss function (Oh and Patton, 2021):

θ̂K,b,T = argmin
θ∈Θ

1

Tb

T∑
t=1

ktTL(y
2
t , σ

2
t ).

Implementing the bandwidth selection procedure introduced in Section 3 requires use of

the local linear estimator. The local linear estimator is based on a local approximation for

θt := θt,T , θt ≈ θT + θ
(1)
T (t/T − 1), where θT is the end-of-sample parameter and θ

(1)
T denotes

its first order derivative. The local linear estimator is given by(
θ̃T , θ̃

(1)
T

)
= argmin

(θ,θ(1))∈Θ×R̃k

LT (θ, θ
(1)), (5)

where R̃ = [−M,M ] for some M > 0. The in-sample loss function LT (θ, θ
(1)) is defined as

LT (θ, θ
(1)) =

1

T b̃

T∑
t=1

k̃tT ℓt
(
θ + θ(1)(t/T − 1)

)
, (6)

where the weights k̃tT = K̃
(

t−T
T b̃

)
are computed using a kernel function K̃(·) with a band-

width parameter b̃ such that b̃ → 0 and T b̃ → ∞ as T → ∞.
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2.2 Assumptions

We now introduce the technical assumptions. Note that the formal definitions of locally

stationary and Lp continuous are provided in Section S1 in the Online Supplement.

Assumption 1. θ (t/T ) : [0, 1] → Rk is twice continuously differentiable on [0, 1].

Assumption 2. Given θ, the loss function {ℓt,T (θ)}1≤t≤T satisfies:

(i) ℓt,T (θ) is Ft-measurable and three-times continuously differentiable in θ;

(ii) ℓt,T (θ) is locally stationary with stationary approximation ℓ̃u,t(θ) for each re-scaled time

point u ∈ (0, 1];

(iii) The first derivative ℓ
(1)
t,T (θ) =

∂ℓt,T (θ)

∂θ
is locally stationary, with stationary approxima-

tion ℓ̃
(1)
u,t(θ) = ∂ℓ̃u,t(θ)

∂θ
for each u ∈ (0, 1];

(iv) The Hessian ℓ
(2)
t,T (θ) =

∂2ℓt,T (θ)

∂θ∂θ′
is locally stationary with stationary approximation ℓ̃

(2)
u,t(θ) =

∂2ℓ̃u,t(θ)

∂θ∂θ′
for each u ∈ (0, 1];

(v) For a given t, Et

[
ℓ
(1)
t,T (θ)

]∣∣∣
θ=θt

= 0.

Assumption 3. At the rescaled time point u = 1,

(i) ℓ̃1,t(θ) is ergodic and L1-continuous w.r.t θ; E
[
ℓ̃1,t(θ)

]
is uniquely minimized at θT ;

(ii) ℓ̃
(1)
1,t (θ) is ergodic and a central limit theorem (CLT) holds (as Tb → ∞):

1√
Tb

T∑
t=1

ktT
∂ℓ̃1,t(θt)

∂θ′
d−→ N (0, ϕ0,KΛT ) ,

where ϕ0,K =
∫
BK

2(u)du and ΛT = Var
(

∂ℓ̃1,t(θT )

∂θ′

)
;

(iii) The process
{
ℓ̃
(2)
1,t (θ)

}
t
is ergodic and all the eigenvalues of ℓ̃(2)1,t (θ) are uniformly bounded

(below and above) over θ ∈ Rk.
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Assumption 4. The kernel functions K(·) and K̃(·) are continuous, positive, and have

compact support B, with
∫
BK(u) du = 1 and

∫
B K̃(u) du = 1.

Assumption 1 imposes conditions on the time-varying parameters. The form of θt can be

fairly general. It includes cases when θ(.) is modeled as smooth deterministic functions of

t/T and when θ(.) is the path of persistent and bounded stochastic process. For example,

following Giraitis et al. (2014), let

θt =
1

td+0.5
ξt, ∆ξt = (1− L)−dvt, vt

i.i.d.∼ N (0, 1), and d ∈ (−0.5, 0.5).

Simple algebra gives θt =
(

t
T

)−d−0.5
Ct, where Ct = 1

T d+0.5 ξt = Op(1) by Theorem 2 in

Davydov (1970). This implies that θt = θ(t/T ) ∝
(

t
T

)−d−0.5, which is twice continuously

differentiable. Giraitis et al. (2014) show that the local estimator can consistently estimate

the paths of the stochastic coefficients. Additionally, as explained in Robinson (1989), the

requirement that θt is a function of the scaled time point t/T is essential in deriving the

consistency of the nonparametric estimator, since the amount of local information on which

an estimator depends has to increase suitably with sample size T . Moreover, this condition

implies that θt changes slowly over time.

Assumption 2 imposes conditions on the loss, its score and Hessian. We do not assume

stationarity, but require the existence of stationary approximation for the scaled time point

u = 1. This assumption can be verified from more primitive conditions on G, εt and θ(·),

which is also related to the existence of stationary solution of (1). More details can be found

in Dahlhaus et al. (2019) and Karmakar et al. (2022). Note that, the conditions are also

model specific. Karmakar et al. (2022) provide analysis on both recursive defined time series

(tvARMA or tvARCH models) and time-varying GARCH model. Assumption 2(v) ensures

that the regret risk takes the form as in (8), which is the criterion to be used for bandwidth

selection.
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Remark 1. Consider the data-generating process (DGP):

yt = a(t/T ) yt−1 + εt, εt
i.i.d.∼ (0, σ2).

Suppose we construct a 2-step-ahead forecast using a direct approach (Marcellino et al., 2006).

By recursive iteration, we have

yt = βt yt−2 + ut, with β = a(t/T ) a((t− 1)/T ) and ut = εt + a(t/T )εt−1.

Under MSE loss, the score is

∂ℓt(θ)

∂θ
= −2ut yt−2, and Et−2

[
∂ℓt(θ)

∂θ

]
= 0.

This implies that Assumption 2(v) continues to hold. However, this assumption fails to hold

if we have model misspecification, for example, the DGP is yt = εt + a(t/T )εt−1, but we use

an AR(1) model yt = θyt−1 + ut to construct the forecasts.

Assumption 3 imposes conditions on the approximated stationary process for the rescaled

time point u = 1. These conditions ensure that certain weak law of large numbers (WLLN)

and central limit theorem (CLT) can be directly applied in the proof of Lemma 1 and Lemma

2. Traditionally, this assumption can be verified by primitive conditions such as mixing

conditions on the process. However, as explained in Li et al. (2012), mixing conditions may

lead to some undesirable properties in time-varying parameter models. We can follow Inoue

et al. (2017) by assuming that the process is near-epoch dependent. Our assumption follows

closely from Cai and Juhl (2023), which make the use of the characterizations of processes

from Zhou and Wu (2010). Assumption 4 introduces conditions for the kernel functions K(·)

and K̃(·).
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2.3 Asymptotic properties

The asymptotic properties of the local estimator (3) and the local linear estimator (5) are

given below.

Lemma 1. Suppose that Assumptions 1, 2, 3 and 4 hold with b → 0 and Tb → ∞. Then,

it holds that

(i) Consistency: θ̂K,b,T
p−→ θT ;

(ii) Consistency rate:
∥∥∥θ̂K,b,T − θT

∥∥∥ = Op

(
(Tb)−1/2 + b

)
;

(iii) If b = O(T−1/3), we have

√
Tb
(
θ̂K,b,T − θT − bθ

(1)
T µ1,K

)
d−→ N (0, ϕ0,KΣT ) ,

where ΣT = H−1
T ΛTH

−1
T , µ1,K =

∫
B uK(u)du, ϕ0,K =

∫
BK

2(u)du, ΛT = Var
(

∂ℓ̃1,t(θT )

∂θ′

)
and HT = E

[
∂2ℓ̃1,t(θT )

∂θ∂θ′

]
.

Lemma 2. Suppose that Assumptions 1, 2, 3 and 4 hold with b̃ → 0 and T b̃ → ∞. Then,

it holds that ∥∥∥θ̃T − θT

∥∥∥ = Op

(
(T b̃)−1/2 + b̃2

)
.

Two issues are worth mentioning. First, Lemma 1(i)-(ii) and Lemma 2 show that the

local estimator θ̂K,b,T and the local linear estimator θ̃T are both consistent, with the latter

converging at a faster rate. This property is crucial for proving the asymptotic optimality

of the proposed bandwidth selection procedure (Theorem 2, Section 3). Second, Lemma

1(iii) provides the asymptotic distribution of the local estimator, which serves as the basis

for deriving the optimal kernel (Theorem 3, Section 4).
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3 Optimal bandwidth selection

We analyze the expected loss at the end of the sample ET

(
ℓT+h(θ̂K,b,T )

)
, where ℓT+h(θ̂K,b,T ) =

L
(
yT+h, ŷT+h|T (θ̂K,b,T )

)
, to derive the optimal bandwidth selection. Suppose that ET

(
ℓT+h(θ̂K,b,T )

)
admits the following Taylor series expansion around an open neighborhood of θT :

ET

(
ℓT+h(θ̂K,b,T )

)
≈ ET (ℓT+h (θT )) + ET

(
∂ℓT+h (θT )

∂θ′

) (
θ̂K,b,T − θT

)
+

1

2

(
θ̂K,b,T − θT

)′
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

) (
θ̂K,b,T − θT

)
. (7)

The population loss in (7) can be decomposed into three components. The first term in

the expansion, ET (ℓT+h (θT )), only involves the true parameter θT and is invariant in the

parameter estimation. Following Hirano and Wright (2017), we define the regret as

RT (K, b) = ET

(
∂ℓT+h (θT )

∂θ′

) (
θ̂K,b,T − θT

)
+
1

2

(
θ̂K,b,T − θT

)′
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

) (
θ̂K,b,T − θT

)
.

Under Assumption 2(v), ET

(
∂ℓT+h(θT )

∂θ′

)
= 0, the regret RT (K, b) simplifies to

RT (K, b) =
(
θ̂K,b,T − θT

)′
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

) (
θ̂K,b,T − θT

)
, (8)

where the constant 1/2 is omitted. Thus, minimizing the population loss at the end of the

sample (7) is equivalent to minimizing RT (K, b) in (8).

The derivation above gives rise to a procedure of selecting the bandwidth parameter b

given the kernel function K(u) with the aim to minimize the expected out-of-sample loss.

Denote ET

(
∂2ℓT+h(θT )

∂θ∂θ′

)
in (8) as ωT (θT ), we consider to choose b by minimizing RT (K, b) in

(8) over a choice set IT :

b̂ := argmin
b∈IT

(θ̂K,b,T − θT )
′ ωT (θT ) (θ̂K,b,T − θT ). (9)

The bandwidth parameter selected using (9) is optimal in the sense that it minimizes the
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end-of-sample risk. This result is formally stated in the following theorem.

Theorem 1. Under Assumptions 1, 2, 3 and 4, the optimal bandwidth parameter b̂ obtained

by minimizing (9) is of order T− 1
3 in probability.

Theorem 1 implies that the optimal effective number of observations ⌊Tb⌋, is of order

T 2/3 in probability. This is the same as the result of Inoue et al. (2017) for rolling-window

selection in linear predictive regression models, but the framework considered here is more

general.

Although the selection criteria (9) is optimal asymptotically, it is infeasible as it involves

the unknown θT . This problem is solved by replacing θT with the local linear estimator θ̃T

given in (5). The consistency of θ̃T implies that the asymptotic property of the criterion is

not affected by such a substitution. This leads to a feasible selection criterion:

b̂ := argmin
b∈IT

(
θ̂K,b,T − θ̃T

)′
ωT

(
θ̃T

) (
θ̂K,b,T − θ̃T

)
. (10)

For the subsequent analysis, we require two additional assumptions.

Assumption 5. The bandwidths b and b̃ satisfy: (i) T b̃5 → 0; (ii) b/b̃ → 0; (iii) T 1/2b̃1/2b →

∞.

Assumption 6. Let IT ⊂ [b, b] denote the candidate set for b, where b and b satisfy the

conditions imposed on b in Assumption 5. In addition, the measure of IT , denoted by |IT |,

satisfies |IT | = b
τ

for some τ ∈ (0, 1).

Assumption 5 imposes conditions on the two bandwidth parameters which again ensures

the asymptotic optimality of the bandwidth parameter selection procedure. Assumption

6 implies the number of elements in the choice set IT shrinks at the rate of b
τ for some

0 < τ < 1. This assumption is useful to derive results uniformly in b, as in Marron (1985)

and Hardle and Marron (1985).
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Theorem 2 establishes the asymptotic optimality of the feasible selection criterion (10)

relative to the infeasible criterion (9). In other words, the approximation error introduced

by replacing θT with θ̃T is asymptotically negligible.

Theorem 2. Under Assumptions 1, 2, 3, 4, 5, and 6, choosing b̂ by (10) is asymptotically

optimal in the sense that(
θ̂b̂,T − θ̃T

)′
ωT

(
θ̃T

) (
θ̂b̂,T − θ̃T

)
≍ inf

b∈IT

(
θ̂b,T − θT

)′
ωT (θT )

(
θ̂b,T − θT

)
where θ̃T is the local linear estimator from (5) with bandwidth parameter b̃.

Theorem 2 provides an extension to the results in Inoue et al. (2017) by showing that

the asymptotic optimality of the local estimator obtained in (3) holds for a generic kernel

function and a generic loss function for forecast evaluation. The asymptotic optimality

implies that b̂ chosen from (10) yields the same forecasts as what can be obtained from using

the true optimal bandwidth parameter by minimizing the infeasible objective function in

(9). The key to establish this result is that the asymptotic bias from local linear estimator

vanishes at a faster rate than local estimator, which neccitates Assumption 5.3

4 On the choice of K(·)

The bandwidth selection procedure in the previous section assumes a given kernel K(·). We

now assess the impact of kernel choice on forecast accuracy. First, taking expectations on

both sides of (8), we obtain the regret risk as defined in Hirano and Wright (2017):

E[RT (K, b)] = tr
(
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

)
E

[(
θ̂K,b,T − θT

)(
θ̂K,b,T − θT

)′])
+ E

(
θ̂K,b,T − θT

)′
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

)
E
(
θ̂K,b,T − θT

)
.

3Assumption 5 imposes conditions on two bandwidth parameters involved (b and b̃), which requires b
goes to zero at a faster rate than b̃, T b̃5 → 0 and T 1/2b̃1/2b → ∞. The condition that T b̃5 → 0 ensures that
the bias of θ̃T vanish asymptotically, while the condition T 1/2b̃1/2b → ∞ is required for obtaining results in
Theorem 2.
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Using Lemma 1(iii), we obtain the limit of the regret risk as T → ∞:

E[RT (K, b)] ∼ tr
(
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

)(
b2µ2

1,Kθ
(1)
T θ

(1)′

T +
ϕ0,KΣT

Tb

))
, (11)

where ϕ0,K =
∫
BK

2(u)du, µ1,K =
∫
B uK(u)du. If we seek to minimize (11) with respect to

b, by setting F.O.C. to zero, we obtain

bopt =

 ϕ0,Ktr
(
ET

(
∂2ℓT+h(θT )

∂θ∂θ′

)
ΣT

)
2µ2

1,Ktr
(
ET

(
∂2ℓT+h(θT )

∂θ∂θ′

)
θ
(1)
T θ

(1)′

T

)


1/3

T−1/3. (12)

By plugging (12) back to (11) and rearranging terms, we get

tr
(
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

)(
b2optµ

2
1,Kθ

(1)
T θ

(1)′

T +
ϕ0,KΣT

Tbopt

))
=

{
3/22/3 (ϕ0,K(−µ1,K))

2/3

(
tr
(
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

)
ΣT

))2/3

(
tr
(
ET

(
∂2ℓT+h (θT )

∂θ∂θ′

)
θ
(1)
T θ

(1)′

T

))1/3
}
T−2/3.

Apparently, the choice of the kernel affects the regret risk through the term Q(K) :=

ϕ0,K(−µ1,K). From a risk reduction perspective, we should choose K(·) with the smallest

Q(K). The optimal kernel is therefore defined by

min
K∈CK

Q(K), (13)

where CK denotes the class of functions satisfying Assumption 4. The following theorem

establishes the optimal kernel function.

Theorem 3. Consider the kernel functions K(·) ∈ CK. Under the setup in Theorem 1, the

optimal kernel function defined by (13) is given by

KT (u) = 2 (1− |u|)1{−1<u<0}.

The optimal kernel for the local estimator (3) is the one-sided triangular kernel KT (·). In
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a similar context, both Smetanina et al. (2025) and Cheng et al. (1997) show that KT (·) is

optimal for their local polynomial estimators at the left boundary point (u = 0). Smetanina

et al. (2025) also consider a more flexible specification, Ks(u) = (1+s/2−su)1{−1<u<0}, and

propose method to select s, given an arbitrary choice of b. It is also worth noting that the

optimal kernel we derive is obtained under two conditions: (i) the bandwidth parameter b is

fixed at its optimal value bopt
4 (in the MSE sense); and (ii) the forecasting model is correctly

specified (Assumption 2(v)).

5 Monte Carlo experiments

We now turn to a Monte Carlo analysis of the forecasting performance of the proposed

bandwidth selection procedure described above. The purpose of this section is twofold.

First, we would like to examine whether the procedure works for various choices of kernel

functions. Second, we would like to investigate whether alternative kernel functions work

better than the uniform kernel, which corresponds to the rolling window selection method

as in Inoue et al. (2017).

5.1 DGPs

Following Pesaran and Timmermann (2007) and Inoue et al. (2017), the DGPs are assumed

to be bivariate Vector Autoregression (VAR) models of lag one:yt+1

xt+1

 =

at bt

0 ρt


yt
xt

+

εyt+1

εxt+1

 , (14)

where the error terms (εyt+1, ε
x
t+1)

′ are generated from i.i.d. N (0, I2). We set ρt = 0.55 +

0.4 sin (4π(t/T )). Thus, {xt} is a locally stationary process (Dahlhaus et al., 2019). The first

4It is worth noting that (12) implies the optimal bandwidth is of order T−1/3, consistent with the result
in Theorem 1. However, the bandwidth chosen from (10) may differ from that in (12), particularly in finite
samples.
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Table 1: Specification of DGPs: V1–V7.

DGP at bt d

V1 0.9− 0.4(t/T ) 1 + (t/T )
V2 0.9− 0.4(t/T )2 1 + (t/T )2

V3 0.9− 0.4 exp(−3.5t/T ) 1 + exp(−16(t/T − 0.5)2)
V4 0.7 + 0.2 cos(4π(t/T )) 1.5 + 0.5 sin(4π(t/T ))

V5
0.75− 0.2 sin (3π (t/T ))

ξt/t
d+0.5, ∆ξt = vt, 0.4

V6 with vt = (1− L)−dϵt, 0
V7 and ϵt

i.i.d.∼ N (0, 0.12). -0.3

equation in (14) is the predictive regression of interest with parameters θt = (at, bt)
′.

We consider 7 different specifications for the time-varying parameters (TVPs) (at, bt)
′.

These specifications, which are summarized in Table 1, are designed to make sure Assumption

1 is satisfied. In DGPs V1–V4, we consider deterministic time-varying parameters with

different functional forms of time-variation in the parameters. In DGPs V5–V7, at still has

deterministic time variation, but bt is the realization of persistent stochastic process. As

explained in Section 2.2, this case (stochastic time variation) also satisfies Assumption 1.

5.2 Implementations

We consider the following predictive regression model:

yt+h = X ′
tθt + εt+h, (15)

where Xt = (yt, xt)
′. Under the mean squared error (MSE) loss, the model parameters θt are

estimated using local least squares

θ̂K,b,T =

(
T∑
t=1

ktTXtX
′
t

)−1( T∑
t=1

ktTXtyt+h

)
. (16)
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The regret risk under the MSE loss becomes

RT (K, b) = (θ̂K,b,T − θT )
′ (XTX

′
T ) (θ̂K,b,T − θT ). (17)

We set b = cT−1/3 and select c by minimizing RT (K, b) using a course grid of width 0.1 from

1 to 7. The true parameters in (17) are approximated by the local linear estimator (5) with

the (one-sided) Epanechnikov kernel k̃(u) = 3
2
(1− u2)1{−1<u<0}, with bandwidth parameter

set by the rule-of-thumb b̃ = 1.06T−1/5.

We consider four different kernel functions for the local estimator:

KR(u) = 1{−1<u<0}, KG(u) =
2√
2π

exp
(
− u2

2

)
1{u<0},

KE(u) =
3

2
(1− u2)1{−1<u<0}, KT (u) = 2 (1− |u|)1{−1<u<0}.

(18)

Using the Uniform kernel KR(·)5 together with the optimal bandwidth selection procedure

is equivalent to the rolling window selection method proposed by Inoue et al. (2017). The

Gaussian kernel KG(·)6 implies an exponential-type downweighting scheme and all observa-

tions are used in the estimation. The Epanechnikov kernel KE(·) imposes a hyperbolic-type

scheme, while the theoretically optimal (Theorem 3) Triangular kernel KT (·) imposes a lin-

ear downweighting scheme. Although KR(·) has been heavily used in the applied work, there

has been a growing interest in other kernel functions. For instance, KG(·) has been used in

macroeconomic forecasting (Kapetanios et al., 2019; Dendramis et al., 2020), and KE(·) is

recommended for equity premium forecasts as in Farmer et al. (2022).

We evaluate the performance of the out-of-sample prediction for yT+h over M = 5, 000

Monte Carlo simulations for T = 200, 400, 800 and h = 1, 5. The benchmark for forecast-

ing comparison is the forecasts obtained from full-sample non-local least square estimates,
5All kernel functions considered here are one-sided versions of the original kernels. For brevity, we refer

to them by their original names.
6Although KG(·) does not satisfy Assumption 4 due to its unbounded support, it is included here due to

its empirical popularity, as it is related to exponential smoothing forecasts.

17



assuming constant coefficients throughout the entire sample period. The forecast evalua-

tions are based on the ratios of MSEs:
∑M

m=1(y
(m)
T+h− ŷ

(m)
T+h|T )

2/
∑M

m=1(y
(m)
T+h− ỹ

(m)
T+h|T )

2, where

M = 5000, ỹmT+h|T is the benchmark forecast and ŷmT+h|T is the forecast from using local

estimators. If the ratio of MSEs is less than 1, the forecasts generated from local estimator

are more accurate than the ones from non-local estimator.

5.3 Simulation results

Table 2 presents the forecasting comparison results for 1-step and 5-step ahead forecasts.

The top, middle and bottom panels report the results for different sample sizes. The shaded

areas indicate the best-performing methods.

Let us start with the results for 1-step ahead forecasts (h = 1). Local estimators con-

sistently improve forecast accuracy when TVPs exhibit deterministic time variation (DGPs

V1–V4). In cases of stochastic time variation (DGPs V5-V7), the local estimator also im-

proves forecast accuracy as the sample size increases, particularly when KG is used as the

weighing function. The choice of K(·) does affect forecasting performance, with KG gener-

ally outperforming the others. Inoue et al. (2017)’s method is the best only in two specific

cases (DGP V2, T = 400, 800), even though the relative gains are rather small compared to

alternative kernel functions.

Turning to the 4-step ahead forecasts, a slightly different pattern emerges. First, we

observe improvements from using local estimators in the case of stochastic time variation,

even when the sample size is small (T = 200). Second, KG outperforms the alternative

kernel functions in nearly all cases.

To conclude, the local estimation method using KG combined with the proposed band-

width selection procedure is recommended for all considered DGPs, particularly at longer

forecast horizons and with larger sample sizes.
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5.4 Additional simulation results

We conduct additional Monte Carlo simulations where at and bt in (14) do not satisfy As-

sumption 1. For brevity, we summarize the main findings here, with full details provided

in Section S3 in the Online Supplement. Specifically, we examine cases where at and bt in

(14) have a one-time structural break. For comparison, we also consider the case where at

and bt are constants. These specifications are summarized in Table S1 and forecast evalua-

tion results are presented in Table S2. Overall, using KG with optimal bandwidth selection

procedure is generally preferred. When the sample size is large (T = 800), KE yields fur-

ther improvements for 5-step-ahead forecasts. The optimal window selection method (OptR)

proposed by Inoue et al. (2017) performs best when the structural break occurs later in the

sample.

6 Empirical applications

We present three empirical applications. First, we consider the prediction of excess bond

returns. Our second application focuses on yield curve forecasts using the popular “dynamic

Nelson–Siegel” model of Diebold and Li (2006). Finally, we examine real-time inflation

forecasts.7

In all three applications, forecasts are constructed either directly or indirectly from the

linear regression models of the form

yt+h = θ0,t + x′
tθt + εt+h, (19)

where parameters are estimated by (local) least squares as in (16). Forecasts are evaluated

using the MSE loss. We consider four different kernel functions as in (18), with the same

optimal bandwidth selection procedure described in the previous section. Parameter esti-
7Due to space considerations, the third empirical application is presented in Section S4.
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Table 2: Forecasting performance of the local estimators for DGPs V1–V7.

h = 1 h = 5
DGP OptR OptG OptE OptT OptR OptG OptE OptT

T = 200
V1 0.960 0.933 0.971 0.977 0.792 0.778 0.797 0.803
V2 0.768 0.759 0.773 0.777 0.726 0.716 0.730 0.735
V3 0.815 0.788 0.825 0.831 0.711 0.696 0.715 0.718
V4 0.789 0.810 0.784 0.784 1.011 0.987 1.034 1.044
V5 1.055 1.023 1.066 1.075 0.957 0.926 0.972 0.983
V6 1.065 1.033 1.077 1.085 0.951 0.930 0.960 0.966
V7 1.040 1.016 1.052 1.059 0.967 0.937 0.988 0.999
T = 400

V1 0.924 0.909 0.930 0.933 0.749 0.742 0.749 0.751
V2 0.713 0.714 0.715 0.717 0.683 0.677 0.681 0.683
V3 0.780 0.767 0.780 0.782 0.700 0.695 0.700 0.701
V4 0.747 0.773 0.745 0.745 1.019 1.005 1.038 1.048
V5 1.033 1.010 1.036 1.040 0.925 0.907 0.932 0.941
V6 1.031 1.016 1.034 1.039 0.958 0.934 0.970 0.978
V7 1.034 1.018 1.043 1.049 0.946 0.926 0.956 0.965
T = 800

V1 0.882 0.879 0.886 0.888 0.718 0.716 0.716 0.717
V2 0.705 0.705 0.707 0.708 0.653 0.652 0.650 0.652
V3 0.747 0.741 0.747 0.748 0.706 0.707 0.703 0.706
V4 0.702 0.724 0.695 0.693 1.014 1.006 1.030 1.038
V5 1.008 0.999 1.010 1.012 0.898 0.895 0.907 0.911
V6 1.007 0.999 1.011 1.013 0.913 0.908 0.922 0.927
V7 1.016 1.008 1.019 1.020 0.928 0.920 0.937 0.942

Note: Ratios of MSEs against the benchmark forecasts using full-sample least square estimators. OptR:
rolling window selection method proposed by Inoue et al. (2017); OptG: optimal bandwidth selection with
Gaussian kernel; OptE : optimal bandwidth selection with Epanechnikov kernel; OptT : optimal bandwidth
selection with triangular kernel.
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mation and optimal bandwidth selection are done recursively, using an expanding window.

The bandwidth parameter used for the local estimator is set as b = cT−1/3, with c varying

from 1 to 10 (in increments of 0.1) for daily data in yield curve forecasting, from 1 to 7

for monthly data in bond return prediction, and from 1 to 5 for quarterly data in real-time

inflation forecasting. The (one-sided) Epanechnikov kernel, K̃(u) = 3
2
(1−u2)1{−1<u<0}, with

fixed bandwidth parameter b̃ = 1.06T−1/5, is used to construct the local linear estimator θ̃T .

To provide a statistical comparison of predictive accuracy, we apply the Diebold-Mariano

test (Diebold and Mariano, 1995) (DM) for equal forecast accuracy. We follow Coroneo and

Iacone (2020) to apply fixed-smoothing asymptotics for the DM test, which is shown to

deliver predictive accuracy tests that are correctly sized even when the number of out-of-

sample observations are small.

6.1 Bond return predictability

Following Cochrane and Piazzesi (2005), we use the following notation for the (log) yield of

an n-year bond by:

y
(n)
t = − 1

n
p
(n)
t ,

where p
(n)
t is the log price of the n-year zero-coupon bond at time t. The holding-period

return from buying an n-year bond at time t and selling it as an (n− 1)-year bond at time

t+ 1 is

r
(n)
t+1 = p

(n−1)
t+1 − p

(n)
t ,

where n can be 2,3,4, or 5 years in our analysis. Our target variable is the risk premium on

a n-year discount bond over a short-term bond, which is the difference between the holding
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period return of the n-year bond and the one-period interest rate,

rx
(n)
t+1 = r

(n)
t+1 − y

(1)
t .

Empirical studies have found that forward rates or forward spreads contain information

on future excess bond returns. Fama and Bliss (1987) find that forward spread has predictive

power on excess bond returns and its forecasting power increases with the forecast horizon.

Cochrane and Piazzesi (2005) find that a linear combination of forward rates predicts excess

bond returns. Furthermore, Ludvigson and Ng (2009) extract factors from a large panel of

macroeconomic variables and show that these factors are useful in predicting future bond

excess returns. Thus, our predictor variables include the Fama-Bliss (FB) forward spreads,

the Cochrane-Piazzesi (CP) factor, and the Ludvigson-Ng (LN) factor. They are computed

as follows.

• The FB forward spreads is simply defined as

fs
(n)
t = f

(n)
t − y

(1)
t ,

where the forward rate f
(n)
t is defined as

f
(n)
t = p

(n−1)
t − p

(n)
t .

• The CP factor is formed as a linear combination of forward rates:

CPt = δ̂′ft,

where ft = (f
(1)
t , f

(2)
t , f

(3)
t , f

(4)
t , f

(5)
t )′. The coefficient vector δ̂ is estimated from

1

4

5∑
n=2

rx
(n)
t+1 = δ0 + δ′ft + εt+1.

• Let ĝit be the ith principle component estimated from a panel of macroeconomic vari-
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ables zit. The LN factor is computed as a linear combination from a subset of the first

eight principle components as in Ludvigson and Ng (2009)8 such that

LNt = λ̂′Ĝt,

where Ĝt =
(
ĝ1,t, ĝ

3
1,t, ĝ3,t, ĝ4,t, ĝ8,t

)
and λ̂ is obtained from the regression

1

4

5∑
n=2

rx
(n)
t+1 = λ0 + λ′Ĝt + εt+1.

The forecasts are constructed from (19). Specifically, we consider three univariate models

(FB, CP, and LN) and a multivariate model that includes all three predictors (FB+CP+LN),

for a total of four models. The benchmark forecasts are obtained from the model implied

by the efficient-market hypothesis, which assumes no predictability by setting θt = 0 and

θ0,t = θ0 in (19) for all t. In addition to the local estimators with weighting functions

given in (18) and optimal bandwidth selection, we also consider the non-local least square

estimator and rolling window estimators with window sizes of 60 and 40. We also provide

results based on forecast combinations from individual models, including equal-weighted

(EW) combinations and combinations based on discounted MSFE (DMSE). Implementation

details are provided in Appendix S5.

Monthly U.S. zero-coupon government bond yield data are taken from Liu and Wu (2021),

which are available from Jing Cynthia Wu’s website.9 The sample period is from June 1961

to December 2024. The FRED-MD data set is used to compute the LN factors. Each variable

is transformed as described in the Appendix of McCracken and Ng (2016). The vintage data

for June 2025 are used. The initial estimation sample runs from June 1961 to December 1984

and the first available individual forecast is for January 1985. We use 5-year holdout OOS

(60 observations) to obtain the initial weights for forecast combination based on DMSFE.
8Ludvigson and Ng (2009) select this combination of factors using the Schwarz information criterion.
9https://sites.google.com/view/jingcynthiawu/yield-data.

23

https://sites.google.com/view/jingcynthiawu/yield-data


Thus, the forecast evaluation period is from January 1990 to December 2024.

Table 3 presents the results. For all entries, they are the ratios of MSEs relative to

the benchmark forecasts. Values below 1 indicate that the corresponding model (method)

performs better than the benchmark. Entries shaded in gray indicate the best performing

models/methods. Combining all individual model forecasts from local estimator using the

theoretically optimal triangular kernel KT and optimal bandwidth based on DMSE always

delivers the best results for the risk premium on 2-year and 3-year bonds. For the risk

premium on 4-year and 5-year bonds, combining forecasts from the rolling window estimator

with a window size of 40 yields the best results. However, the DM test does not reject equal

forecast accuracy between these forecasts and those using KT with the optimal bandwidth,

which rank second. The findings demonstrate that, in the context of bond return prediction,

the proposed optimal bandwidth selection significantly enhances the forecasting performance

of the local estimator, especially when combined with the theoretically optimal kernel KT .

6.2 Yield curve forecasting

Let yt(τ) be the yield on a bond with maturity τ at time t. The Nelson–Siegel model (Nelson

and Siegel, 1987) for the term structure of yields is

yt(τ) = β1,t + β2,t

(
1− e−λtτ

λtτ

)
+ β3,t

(
1− e−λtτ

λtτ
− e−λtτ

)
+ et(τ), (20)

where et(τ) is the measurement error. The specification in (20) has four free parameters:

the level factor β1,t, the slope factor β2,t, the curvature factor β3,t, and λt, which determines

the maturity at which the loading on the curvature factor achieves its maximum. These

parameters (β1,t, β2,t, β3,t, λt)
′ could be jointly estimated by nonlinear least squares for each

t. Following standard practice tracing to Nelson and Siegel (1987), we fix λt at a prespecified

value, so that we can estimate (β1,t, β2,t, β3,t)
′ using ordinary least squares. Specifically, we
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set λt = 0.0609 for all t (Diebold and Li, 2006), which implies that the loading on the

curvature factor peaks at exactly 30 months.

To complete model specification, Diebold and Li (2006) propose to model and forecast

the Nelson–Siegel factors (β1,t, β2,t, β3,t)
′ as univariate AR(1) processes:

βi,t+h = ϕ0i,t + ϕ1i,tβi,t + ϵi,t+h, (21)

where i = 1, 2, 3. (20) and (21) jointly define the "dynamic Nelson–Siegel" (DNS) model.

The yield forecasts ŷt+h|t(τ) based on the DNS model are constructed as follows. For

each t, we first run a cross-sectional regression to obtain the observed factors {βi,t}t. Then,

for each {βi,t}t, we run the time-series regression to obtained the predicted factors: β̂i,t+h|t =

ϕ̂0i,t,n + ϕ̂1i,t, nβi,t. Finally, ŷt+h|t(τ) are constructed based on (20): ŷt+h|t(τ) = β̂1,t+h|t +

β̂2,t+h|t

(
1−e−λτ

λτ

)
+ β̂3,t+h|t

(
1−e−λτ

λτ
− e−λτ

)
.

We consider four estimation methods to obtain (ϕ̂0i,t,n, ϕ̂1i,t,n)
′ from (21): non-local least

squares, rolling window estimators with window sizes of 1,000 and 500, and local estimators

based on the kernel functions in (18) with optimal bandwidth selection procedure.10 The

benchmark forecasts are those generated by the non-local least squares estimators.

We use daily data over the period January 2000 to December 2024. We consider U.S.

zero-coupon government bonds with maturities of three and six months, and one to ten years,

a total of twelve maturities. As in Section 6.1, the data are obtained from Jing Cynthia Wu’s

website. The initial estimation sample runs from January 2000 to December 2004 and the

first available individual forecast is for the first trading day of 2005. Thus, the forecast

evaluation period is from January 2005 to December 2024.

We present results for two forecast horizons, one day (h = 1) and five days (h = 5).

The results in Table 4, for the one-day horizon, show that the gains from local estimators
10Let yt+h = βi,t+h, Xt = (1, βi,t)

′, and θt = (ϕ0i,t, ϕ1i,t)
′. We use the exact procedure described in

Section 5 to select the optimal bandwidth for each i = 1, 2, 3.
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are more pronounced for medium-term yields (τ = 4, 5, 6, 7, 8). They are statistically signif-

icant, and our proposed optimal bandwidth selection procedure does better than the fixed

rolling window forecasts. Using alternative kernel functions also improves forecast accuracy

relative to the rolling window selection method proposed by Inoue et al. (2017) (OptR). The

theoretically optimal triangular kernel KT is the best in four cases (τ = 6, 7, 8, 9), while

using Gaussian kernel KG is the best in two cases (τ = 4, 5). Fixed rolling window forecasts

achieve the best results in three cases (τ = 0.25, 0.5, 10), even though the magnitude of the

gains is rather small.

The results for the five-day horizon, shown in Table 5, are generally similar compared to

the results for one-day horizon. Gains are generally more evident for the medium term yields.

When combined with the proposed optimal bandwidth selection procedure, the Gaussian

kernel KG consistently outperforms the rolling window method proposed by Inoue et al.

(2017) (OptR). It yields the best results in four cases (τ = 5, 6, 7, 8) and performs comparably

to the fixed rolling window forecasts (R = 500) for τ = 9, 10.
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Table 4: Out-of-sample forecasting performance for the yiled curve: h = 1, January 2005–December 2024.

τ R = 1000 R = 500 OptR OptG OptE OptT

0.25 0.995∗ 0.995 0.999 0.996 0.999 0.999

0.5 0.991∗ 0.993 1.006 0.995 1.005 1.005

1 1.006 1.008 1.005 1.010 1.006 1.007

2 1.004 1.008 1.008 1.010 1.010 1.010

3 1.002 1.007 1.005 1.007 1.008 1.008

4 1.004 0.998 0.994 0.987∗ 0.992 0.991

5 1.000 0.982 0.981 0.973∗ 0.977 0.975∗

6 0.997 0.974∗ 0.973∗ 0.971∗ 0.970∗ 0.969∗

7 0.992 0.976∗ 0.975∗ 0.975∗ 0.973∗ 0.973∗

8 0.993 0.982∗ 0.981∗ 0.981∗ 0.979∗ 0.979∗

9 0.994 0.985∗ 0.985 0.985∗ 0.983 0.983

10 0.996 0.991 0.994 0.994 0.994 0.995

Note: This table presents ratios of out-of-sample MSEs for yield curve forecasts obtained using local

estimators from the DNS model, relative to the benchmark forecasts generated by the non-local least

squares estimators. The estimation methods used include R = 1000, R = 500 (rolling window estimator

with a window size of 1000 or 500), and Opti (local estimator with optimal bandwidth selection and

kernel Ki given in (18). Differences in accuracy that are significant at the 5 percent level (using the

DM test) are marked by an asterisk. Entries shaded in gray indicate the best performing methods. The

maturity τ is expressed in years.
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Table 5: Out-of-sample forecasting performance for the yiled curve: h = 5, January 2005–December 2024.

τ R = 1000 R = 500 OptU OptG OptE OptT

0.25 0.992 1.000 1.025 1.003 1.027 1.026

0.5 1.013 1.031 1.118 1.024 1.118∗ 1.111

1 1.026 1.035 1.044 1.037 1.047 1.048

2 1.020 1.041 1.059 1.046 1.064 1.066

3 1.014 1.045 1.073 1.040 1.080 1.082

4 1.019 1.025 1.059 1.003 1.059 1.058

5 1.011 0.981 1.012 0.963 1.007 1.004

6 1.000 0.945 0.965 0.938∗ 0.962 0.960

7 0.987 0.942∗ 0.955 0.940∗ 0.951 0.949

8 0.987 0.959 0.971 0.956 0.968 0.966

9 0.989 0.966 0.984 0.966 0.982 0.980

10 0.994 0.981 1.006 0.991 1.007 1.006

Note: See notes to Table 4.

7 Conclusion

Parameter instability is pervasive in many forecasting models, and the local estimator is often

employed to address this issue. In this paper, we consider practical issues associated with

the use of local estimator in an out-of-sample forecasting context. We propose a bandwidth

selection procedure based on minimizing the conditional expected loss at the end of the

sample. This approach is related to Inoue et al. (2017), who study rolling window selection,

but we establish that asymptotic optimality also holds when a general kernel function is used

for estimation and a general loss function is employed for forecast evaluation. In addition, we

discuss the implications of kernel choice. In particular, we derive the optimal kernel function

and show that it is the one-sided triangular kernel rather than the flat kernel, implying that

the rolling window estimator may not always be the best choice.
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Our theoretical results are evaluated through an extensive Monte Carlo study and three

empirical applications: bond return predictability, yield curve forecasting, and real-time

inflation forecasting. Both the simulation and empirical results show that the local estimator,

when combined with our proposed optimal bandwidth selection, performs well under various

forms of parameter instability. Moreover, the findings suggest that relying solely on the

optimal rolling window method of Inoue et al. (2017) may be inadequate, as alternative

kernel functions can deliver further improvements in forecast accuracy.
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A Mathematical proofs

A.1 Proof of Lemma 1

Recall the definition of local estimator:

θ̂K,b,T = argmin
θ∈Θ

1

Tb

T∑
t=1

ktT ℓt,T (θ), (B.1)

where ℓt,T (θ) = ℓ(yt,T , ŷt,T |t−1,T (θ)). Let LT (θ) =
1
Tb

∑T
t=1 ktT ℓt,T (θ).

Proof of (i): Write L̃T (θ) =
1
Tb

∑T
t=1 ktT ℓ̃1,t(θ), where ℓ̃1,t(·) is the stationary approximation

of ℓt,T . By Assumption 2 and Definition 1, we have

sup
θ∈Θ

∣∣∣LT (θ)− L̃T (θ)
∣∣∣ ⩽ sup

θ∈Θ

1

Tb

T∑
t=1

ktT

∣∣∣ℓt,T (θ)− ℓ̃1,t(θ)
∣∣∣

⩽ Op(1)
1

Tb

T∑
t=1

ktT (T
−1 + ρt) = Op(T

−1) +Op

(
(Tb)−1/2

)
= op(1),

(B.2)

where order of the second term follows from Cauchy-Schwarz inequality:

1

Tb

T∑
t=1

ktTρ
t ⩽

√√√√ 1

(Tb)2

T∑
t=1

k2
tT

√√√√ T∑
t=1

ρ2t = O
(
(Tb)−1/2

)
.

This implies that (B.1) can be viewed as

θ̂K,b,T = argmin
θ∈Θ

L̃T (θ).

In view of Theorem 2.1 in Newey and McFadden (1994), it is sufficient to verify that

(1) E
[
ℓ̃1,t(θ)

]
is uniquely minimized at θT (assumed in Assumption 3(i));

(2) Θ is compact (assumed in Assumption 1);

(3) L̃T (θ) is continuous (implied by Assumption 2(i));
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(4) Uniform weak law of large numbers (UWLLN):

sup
θ∈Θ

∣∣∣∣∣ 1Tb
T∑
t=1

ktT ℓ̃1,t(θ)− E
[
ℓ̃1,t(θ)

]∣∣∣∣∣ = op(1).

What remains is to show (4). The ergodicity assumed in Assumption 3(i) implied that

for each θ ∈ Θ, we have ∣∣∣∣∣ 1Tb
T∑
t=1

ktT ℓ̃1,t(θ)− E
[
ℓ̃1,t(θ)

]∣∣∣∣∣ = op(1).

Then, uniform consistency result follows if we could show that L̃T (θ) is stochastic equicon-

tinuous, which follows from the fact that ℓ̃u,t(θ) is L1 continuous.

Proof of (ii) and (iii): Let us first define the score and the Hessian:

ST (θ) =
∂LT (θ)

∂θ
=

1

Tb

T∑
t=1

ktT
∂ℓt,T (θ)

∂θ
, HT (θ) =

∂2LT (θ)

∂θ∂θ′
=

1

Tb

T∑
t=1

ktT
∂2ℓt,T (θ)

∂θ∂θ′
.

By mean value theorem, we have

∂LT (θT )

∂θ
+

∂2LT

(
θT
)

∂θ∂θ′

(
θ̂K,b,T − θT

)
= 0,

where θT lies between θT and θ̂K,b,T . By rearranging terms, we have

θ̂K,b,T − θT = −

(
∂2LT

(
θT
)

∂θ∂θ′

)−1(
∂LT (θT )

∂θ

)

= −
(
∂2LT (θT )

∂θ∂θ′

)−1(
∂LT (θT )

∂θ

)
+

(∂2LT (θT )

∂θ∂θ′

)−1

−

(
∂2LT

(
θT
)

∂θ∂θ′

)−1
 ∂LT (θT )

∂θ

= −
(
∂2LT (θT )

∂θ∂θ′

)−1 (
∂LT (θT )

∂θ

)
+

(
∂2LT (θT )

∂θ∂θ′

)−1
[
∂2LT

(
θT
)

∂θ∂θ′
− ∂2LT (θT )

∂θ∂θ′

]

×

(
∂2LT

(
θT
)

∂θ∂θ′

)−1
∂LT (θT )

∂θ
,

:= −H−1
T (θT )ST (θT ) +H−1

T (θT )
[
HT

(
θT
)
−HT (θT )

]
H−1

T

(
θT
)
ST (θT ) (B.3)
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We will show that

∥∥H−1
T (θT )

∥∥ = Op(1), (B.4)

∥ST (θT )∥ = Op

(
(Tb)−1/2 + b

)
, (B.5)∥∥HT

(
θT
)
−HT (θT )

∥∥ = op(1). (B.6)

These bounds together with (B.3) implies the consistency rate in 1(i).

Proof of (B.4). It follows similarly from (B.2) that∥∥∥HT (θT )− H̃T (θT )
∥∥∥ = op(1),

where H̃T (θT ) =
1
Tb

∑T
t=1 ktT

∂2ℓ̃1,t(θT )

∂θ∂θ′
. Write

H̃T (θT ) =
1

Tb

T∑
t=1

ktTE

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

]
+

1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t (θT )

∂θ∂θ′
− E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

])

= H̃∗
T

(
Ik + ∆̃T

)
, (B.7)

where H̃∗
T = 1

Tb

∑T
t=1 ktTE

[
∂2ℓ̃1,t(θT )

∂θ∂θ′

]
and ∆̃T =

(
H̃∗

T

)−1 (
H̃T − H̃∗

T

)
. By Assumption 3(iii),

for any k× 1 vector a = (a1, · · · , ak)′ such that ∥a∥2 = 1, there exists v > 0 such that for all

t ⩾ 1,

a′E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

]
a ⩾ 1/v > 0.

Thus, we have,

min
∥a∥=1

a′H̃T,1a = min
∥a∥=1

(
1

Tb

T∑
t=1

ktTa
′E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

]
a

)
⩾

1

v

(
1

Tb

T∑
t=1

ktT

)
> 0.

This means that the smallest eigenvalue of H̃T,1 is not smaller than 1/v > 0, which further

implies that ∥∥∥∥(H̃∗
T

)−1
∥∥∥∥
sp

= Op(1),
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where ∥·∥sp denotes the spectral norm. In addition, by Assumption 3(iii), we have∥∥∥H̃T − H̃∗
T

∥∥∥
sp

= op(1).

Then, ∥∥∥H̃−1
T (θT )

∥∥∥
sp

⩽

∥∥∥∥(H̃∗
T

)−1
∥∥∥∥
sp

(
1−

∥∥∥H̃T − H̃∗
T

∥∥∥
sp

)−1

= Op(1),

which implies that
∥∥H−1

T (θT )
∥∥
sp

= Op(1).

Proof of (B.5). We have that

ST (θT ) =
∂LT (θT )

∂θ
=

1

Tb

T∑
t=1

ktT
∂ℓt,T (θT )

∂θ

=
1

Tb

T∑
t=1

ktT
∂ℓt,T (θt)

∂θ
+

1

Tb

T∑
t=1

ktT
∂2ℓt,T

(
θT
)

∂θ∂θ′
(θT − θt)

:= ST (θt) +BT , (B.8)

where the second line follows from mean-value theorem. Let us first consider ST (θt). Using

the similar argument as in (B.2), we have∥∥∥ST (θt)− S̃T (θt)
∥∥∥ = op(1).

where S̃T (θt) = 1
Tb

∑T
t=1 ktT

∂ℓ̃1,t(θt)

∂θ
. By Assumption 3(ii), we have

∥∥∥S̃T (θt)
∥∥∥ = Op

(
1√
Tb

)
.

For B̃T , first notice that by Assumption 1, we have

θt ≈ θT + θ
(1)
T

(
t− T

T

)
+

θ
(2)
T

2

(
t− T

T

)2

.
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Then

B̃T =
1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′
− E

[
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′

]
+ E

[
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′

]) (
θ
(1)
T

(
t− T

T

)
+

θ
(2)
T

2

(
t− T

T

)2
)

=
1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′
− E

[
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′

]
+ E

[
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′

])
θ
(1)
T

(
t− T

T

)

+
1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′
− E

[
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′

]
+ E

[
∂2ℓ̃1,t

(
θT
)

∂θ∂θ′

]) (
θ
(2)
T

2

(
t− T

T

)2
)

:= B̃T,1 + B̃T,2.

Consider first B̃T,1. We have

B̃T,1 =
1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t (θT )

∂θ∂θ′
− E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

])
θ
(1)
T

(
t− T

T

)

+
1

Tb

T∑
t=1

ktT

(
E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

])
θ
(1)
T

(
t− T

T

)
.

By Assumption 3(iii),∥∥∥∥∥ 1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t (θT )

∂θ∂θ′
− E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

])
θ
(1)
T

(
t− T

T

)∥∥∥∥∥ = op(1)

and∥∥∥∥∥ 1

Tb

T∑
t=1

ktT

(
E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

])
θ
(1)
T

(
t− T

T

)∥∥∥∥∥ ⩽ C 1

Tb

T∑
t=1

ktT

(
t− T

T

)
∼ b

∫
B
uK(u)du,

where C is a generic constant.Thus, we have
∥∥∥B̃T,1

∥∥∥ = Op(b).Similarly, we could show that∥∥∥B̃T,2

∥∥∥ = Op(b
2). This implies that the dominating term is B̃T,1 and we thus have

∥∥∥B̃T

∥∥∥ =

Op(b). This further implies that
∥∥∥S̃T (θT )

∥∥∥ ⩽
∥∥∥S̃T (θt)

∥∥∥ +
∥∥∥B̃T

∥∥∥ = Op

(
1√
Tb

+ b
)

, which

establishes (B.5).

Proof of (B.6). This follow immediately by the consistency: θ̂K,b,T
p→ θT .
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Back to (B.3), under the condition b = O(T−1/3), we have

√
Tb
(
θ̂K,b,T − θT + H̃−1

T (θT ) B̃T

)
= −H̃−1

T (θT )
√
TbS̃T (θT ). (B.9)

As the dominating term of the asymptotic bias is given by

B̃T = − 1

Tb

T∑
t=1

ktTE

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

]
θ
(1)
T

(
t− T

T

)
(1 + op(1)).

It is straightforward to see the asymptotic bias term can be expressed as

H̃−1
T (θT ) B̃T = bθ

(1)
T µ1,K ,

where µ1,K =
∫
B uK(u)du. By applying CLT on

√
TbS̃1,T , together with Slutsky’s theorem,

we obtain

√
Tb
(
θ̂K,b,T − θT − bθ

(1)
T µ1,K

)
d−→ N (0, ϕ0,KΣT ) ,

where ΣT = ω̃−1
T ΛT ω̃

−1
T , ω̃T = E

[
∂2ℓ̃1,t(θT )

∂θ∂θ′

]
and ΛT = V ar

(
∂ℓ̃1,t(θT )

∂θ′

)
.

A.2 Proof of Lemma 2

The objective function is given by

LT (θ, θ
(1)) =

1

T b̃

T∑
t=1

k̃tT ℓt,T
(
θ + θ(1)(t/T − 1)

)
.

Define βT = θT + θ
(1)
T (t/T − 1). Similarly as in (B.3), we have that θ̃T − θT

θ̃
(1)
T − θ

(1)
T

 = −

 1
T b̃

∑T
t=1 k̃tT

∂2ℓt,T (β)

∂θ∂θ′
1
T b̃

∑T
t=1 k̃tT

∂2ℓt,T (β)

∂θ∂θ
′(1)

(
t−T
T

)
1
T b̃

∑T
t=1 k̃tT

∂2ℓt,T (β)

∂θ(1)∂θ′

(
t−T
T

)
1
T b̃

∑T
t=1 k̃tT

∂2ℓt,T (β)

∂θ(1)∂θ
′(1)

(
t−T
T

)2


−1

 1
T b̃

∑T
t=1 k̃tT

∂ℓt,T (β)

∂θ

1
T b̃

∑T
t=1 k̃tT

∂ℓt,T (β)

∂θ(1)

(
t−T
T

)
+ op(1) (B.10)
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Using similar arguments for the proofs of (B.4)-(B.5), we have∥∥∥∥∥ 1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T (β)

∂θ∂θ′

∥∥∥∥∥ = Op(1),

∥∥∥∥∥ 1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T (β)

∂θ∂θ′(1)

(
t− T

T

)∥∥∥∥∥ = Op(b̃)∥∥∥∥∥ 1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T (β)

∂θ(1)∂θ′

(
t− T

T

)∥∥∥∥∥ = Op(b̃),

∥∥∥∥∥ 1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T (β)

∂θ(1)∂θ′(1)

(
t− T

T

)2
∥∥∥∥∥ = Op(b̃

2).

Moreover, since

θt ≈ θT + θ
(1)
T

(
t− T

T

)
+

θ
(2)
T

2

(
t− T

T

)2

,

following again the proofs of (B.4)-(B.5), we have

1

T b̃

T∑
t=1

k̃tT
∂ℓt,T (β)

∂θ
=

1

T b̃

T∑
t=1

k̃tT
∂ℓt,T (θt)

∂θ
+

1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T

(
θT
)

∂θ∂θ′

(
θT + θ

(1)
T

(
t− T

T

)
− θt

)

=
1

T b̃

T∑
t=1

k̃tT
∂ℓt,T (θt)

∂θ
+

1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T

(
θT
)

∂θ∂θ′
θ
(2)
T

2

(
t− T

T

)2

= Op

(
(T b̃)−1/2

)
+Op

(
b̃2
)
,

and

1

T b̃

T∑
t=1

k̃tT
∂ℓt,T (β)

∂θ(1)

(
t− T

T

)
=

1

T b̃

T∑
t=1

k̃tT
∂ℓt,T (θt)

∂θ(1)

(
t− T

T

)
+

1

T b̃

T∑
t=1

k̃tT
∂2ℓt,T

(
θT
)

∂θ(1)∂θ′(1)

θ
(2)
T

2

(
t− T

T

)3

= Op((T b̃)
−1/2b̃) +Op(b̃

3)

where θT lies between θt and θT + θ
(1)
T

(
t−T
T

)
. It follows that θ̃T − θT

θ̃
(1)
T − θ

(1)
T

 = −

Op(1) Op(b̃)

Op(b̃) Op(b̃
2)


−1 Op

(
(T b̃)−1/2

)
+Op

(
b̃2
)

Op((T b̃)
−1/2b̃) +Op(b̃

3)

+ op(1) (B.11)

=

 Op

(
(T b̃)−1/2 + b̃2

)
Op

(
T−1/2b̃−3/2 + b̃

)
 (B.12)
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Therefore, we obtain the consistency rate for θ̃T :∥∥∥θ̃T − θT

∥∥∥ = Op

(
(T b̃)−1/2 + b̃2

)
.

A.3 Auxiliary Lemmas

Here, we present two auxiliary lemmas. See Online Supplement for the proof of Lemma 3.

Lemma 3. Suppose that Assumptions 1, 2, 3 and 4(i) hold with b → 0 and Tb → ∞. Then,

for some 0 < δ < 1
2
, it holds that

sup
b∈IT

∥∥∥θ̂K,b,T − θT

∥∥∥ = Op(rT,b,δ), (B.13)

where rT,b,δ = T−1/2b−1/2+δ + b1−δ.

Lemma 4. Define

L(b) =
(
θ̂b,T − θT

)′
ωT (θT )

(
θ̂b,T − θT

)
,

A(b) =
(
θ̂b,T − θ̃T

)′
ωT

(
θ̃T

) (
θ̂b,T − θ̃T

)
,

where θ̂b,T = θ̂K,b,T and ωT (θ) = ET

(
∂2ℓT+h(θ)

∂θ∂θ′

)
. Suppose that Assumptions 1-5 hold, we

have

sup
b∈IT

∣∣∣∣L(b)− A(b)

L(b)

∣∣∣∣ = op(1). (B.14)

Proof. Recall that ωT (θ) = E
[
∂2ℓT+h(θ)

∂θ∂θ′

]
. Define

ω
(1)
T (θT ) =

[
∂ωT (θT )

∂ [θT ]1
· · · ∂ωT (θT )

∂ [θT ]d

](
θ̃T − θT

)
,

43



where [θT ]s denotes the sth elements of the d× 1 vector θT . Let us first expand A(b):

A(b) =
(
θ̂b,T − θ̃T

)′
ωT

(
θ̃T

) (
θ̂b,T − θ̃T

)
=
(
θ̂b,T − θT + θT + θ̃T

)′ (
ωT (θT ) + ω

(1)
T (θT )

) (
θ̂b,T − θT + θT + θ̃T

)
= L(b)− 2

(
θ̂b,T − θT

)′
ωT (θT )

(
θ̃T − θT

)
+
(
θ̃T − θT

)′
ωT (θT )

(
θ̃T − θT

)
+
(
θ̂b,T − θT

)′
ω
(1)
T (θT )

(
θ̂b,T − θT

)
− 2

(
θ̂b,T − θT

)′
ω
(1)
T (θT )

(
θ̃T − θT

)
+
(
θ̃T − θT

)′
ω
(1)
T (θT )

(
θ̃T − θT

)
:= L(b)− 2D1(b) +D′

1 +D2(b)− 2D3(b) +D′
2,

where

D1(b) =
(
θ̂b,T − θT

)′
ωT (θT )

(
θ̃T − θT

)
, D′

1 =
(
θ̃T − θT

)′
ωT (θT )

(
θ̃T − θT

)
,

D2(b) =
(
θ̂b,T − θT

)′
ω
(1)
T (θT )

(
θ̂b,T − θT

)
, D3(b) =

(
θ̂b,T − θT

)′
ω
(1)
T (θT )

(
θ̃T − θT

)
,

D′
2 =

(
θ̃T − θT

)′
ω
(1)
T (θT )

(
θ̃T − θT

)
.

Then, we have

L(b)− A(b)

L(b)
=

2D1(b)

L(b)
− D′

1

L(b)
− D2(b)

L(b)
+

D3(b)

L(b)
− D′

2

L(b)
.

By Lemma 2 and Assumption 5(i), we have∥∥∥θ̃T − θT

∥∥∥ = Op

(
(T b̃)−1/2

)
. (B.15)

We will show that

sup
b∈IT

∣∣∣∣D1(b)

L(b)

∣∣∣∣ = op(1), sup
b∈IT

∣∣∣∣D2(b)

L(b)

∣∣∣∣ = op(1), sup
b∈IT

∣∣∣∣D3(b)

L(b)

∣∣∣∣ = op(1), (B.16)

sup
b∈IT

∣∣∣∣ D′
1

L(b)

∣∣∣∣ = op(1), sup
b∈IT

∣∣∣∣ D′
2

L(b)

∣∣∣∣ = op(1). (B.17)

These bounds together with triangular inequality imply (B.14).
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Proof of (B.16). First, by Lemma 3 and Assumption 3(iii), ∥ωT (θT )∥sp = Op(1) and

sup
b∈IT

|L(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T − θT

∥∥∥ ∥ωT (θT )∥sp sup
b∈IT

∥∥∥θ̂b,T − θT

∥∥∥ = Op

(
r2T,b,δ

)
, (B.18)

for some 0 < δ < 1/2. Write r̃T,b̃ = (T b̃)−1/2, we also have

sup
b∈IT

|D1(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T − θT

∥∥∥ ∥ωT (θT )∥sp
∥∥∥θ̃T − θT

∥∥∥ = Op

(
rT,b,δ r̃T,b̃

)
,

sup
b∈IT

|D2(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T − θT

∥∥∥ ∥∥∥ω(1)
T (θT )

∥∥∥
sp

sup
b∈IT

∥∥∥θ̂b,T − θT

∥∥∥ = Op

(
r2T,b,δ r̃T,b̃

)
,

sup
b∈IT

|D3(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T − θT

∥∥∥ ∥∥∥ω(1)
T (θT )

∥∥∥
sp

∥∥∥θ̃T − θT

∥∥∥ = Op

(
rT,b,δ r̃

2
T,b̃

)
,

where the second and third line follow from the fact that ω
(1)
T (θT ) involves θ̃T − θT so the

order of
∥∥∥ω(1)

T (θT )
∥∥∥
sp

= Op(r̃T,b̃), which is determined by
∥∥∥θ̃T − θT

∥∥∥. These bounds imply

that

sup
b∈IT

∣∣∣∣D1(b)

L(b)

∣∣∣∣ = Op

(
r̃T,b̃
rT,b,δ

)
= op(1),

where
r̃T,b̃

rT,b,δ
→ 0 is guaranteed by Assumption 5. Similarly, we have

sup
b∈IT

∣∣∣∣D2(b)

L(b)

∣∣∣∣ = Op

(
r̃T,b̃
)
= op(1),

as T b̃ → ∞. Finally, we have

sup
b∈IT

∣∣∣∣D3(b)

L(b)

∣∣∣∣ = Op

(
r̃2
T,b̃

rT,b,δ

)
= op(1),

where
r̃2
T,b̃

rT,b,δ
→ 0 is again guaranteed by Assumption 5.

Proof of (B.17). First, it is straightforward to show that

|D′
1| = Op(r̃

2
T,b̃

), |D′
2| = Op(r̃

3
T,b̃

).
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Together with (B.18) and following the same reasoning above, we have

sup
b∈IT

∣∣∣∣ D′
1

L(b)

∣∣∣∣ = Op

(
r̃2
T,b̃

r2T,b,δ

)
= op(1), sup

b∈IT

∣∣∣∣ D′
2

L(b)

∣∣∣∣ = Op

(
r̃3
T,b̃

r2T,b,δ

)
= op(1).

A.4 Proof of Theorem 1

For a given kernel function K = K̄, write θ̂K,b,T = θ̂b,T and ωT (θT ) = ET

(
∂2ℓT+h(θT )

∂θ∂θ′

)
. It

follows from Lemma 1 that, the infeasible objective function can be written as(
θ̂b,T − θT

)′
ωT (θT )

(
θ̂b,T − θT

)
= rT,bqT ,

where qT is a scalar Op(1) random variable and rT,b = (Tb)−1/2+ b. The first-order condition

of rT,b with respect to b gives b̂ = Op(T
− 1

3 ). Since the second order derivative of rT,b is always

positive, the optimal bandwidth minimize the objective function.

A.5 Proof of Theorem 2

Write θ̂K,b,T = θ̂b,T and ωT (θT ) = ET

(
∂2ℓT+h(θT )

∂θ∂θ′

)
. Let

b̂ := argmin
b∈IT

(θ̂b,T − θ̃T )
′ ωT (θ̃T ) (θ̂b,T − θ̃T )

be the bandwidth selected according to the feasible criterion. As in the proof of Lemma 4,

the decomposition of A(b) implies that

A(b̂) = L(b̂)− 2D1(b̂) +D′
1 +D2(b̂)− 2D3(b̂) +D′

2.
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Then, we have

A(b̂)

infb∈IT L(b)
=

L(b̂)

infb∈IT L(b)
− 2D1(b̂)

infb∈IT L(b)
+

D2(b̂)

infb∈IT L(b)
− 2D3(b̂)

infb∈IT L(b)
+

D′
1

infb∈IT L(b)
+

D′
2

infb∈IT L(b)

= I1(b̂) + I2(b̂) + I3(b̂) + I4(b̂) + I5 + I6.

Following (B.16) and (B.17), we have

I2(b̂) = op(1), I3(b̂) = op(1), I4(b̂) = op(1), I5 = op(1), I6 = op(1).

To proof that A(b̂)/ infb∈IT L(b) →p 1, it is suffice to establish that

I1(b̂)
p−→ 1. (B.19)

For any b, b′ ∈ IT , it follows immediately from Lemma 4 that

sup
b,b′∈IT

∣∣∣∣L(b)− L(b′)− (A(b)− A(b′))

L(b) + L(b′)

∣∣∣∣ ⩽ sup
b∈IT

∣∣∣∣L(b)− A(b)

L(b)

∣∣∣∣+ sup
b′∈IT

∣∣∣∣L(b′)− A(b′)

L(b′)

∣∣∣∣ = op(1).

This implies that for any ϵ > 0,

P

[
L(b̂)− L(b̂′)− (A(b̂)− A(b̂′))

L(b̂) + L(b̂′)
⩽ ϵ

]
→ 1.

Thus, by rearranging terms, we obtain

(1− ϵ)L(b̂)− (1 + ϵ)L(b̂′) ⩽ A(b̂)− A(b̂′)) ⩽ 0 a.s.

Then, we have

1 ⩽
L(b̂)

L(b̂′)
⩽

1 + ϵ

1− ϵ
a.s.

This completes the proof of (B.19).
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A.6 Proof of Theorem 3

Let {Pn(u)}∞n=0 denote the shifted Legendre polynomials on [−1, 0]. That is, Pn(u) = Qn(2u+

1), where {Qn(u)}∞n=0 are the standard Legendre polynomials on [−1, 1]. For example,

P0(u) = 1, P1(u) = 2u+ 1, and P2(u) = 6u2 + 6u+ 1.

Since {Qn(u)}∞n=0 forms an orthogonal basis in the Hilbert space L2([−1, 1]), it follows by a

change of variables that, for any n,m ≥ 0,∫ 0

−1

Pn(u)Pm(u)du =
1

2n+ 1
δnm, (B.20)

where δnm is the Kronecker delta, equal to one if m = n and zero otherwise. Moreover, since∫ 1

−1
Qn(u) du = 0 for all n ≥ 1, we also have∫ 0

−1

Pn(u) = 0, for all n ≥ 1. (B.21)

The basis {Pn}∞n=0 is now used to expand the kernel function K(u) into orthogonal series,

that is,

K(u) =
∞∑
n=0

cnPn(u),

where K(·) ∈ L2([−1, 0]) = {f(u) :
∫ 0

−1
f 2(u)du < ∞}, in which the inner product is given

by ⟨f1, f2⟩ =
∫ 0

−1
f1(u)f2(u)du and the induced form ∥f∥2 = ⟨f, f⟩. To extract the coefficient

cn, take the inner product of both sides with Pn(u):

⟨K(u), Pn(u)⟩ =
∞∑

m=0

cn⟨Pm(u), Pn(u)⟩ = cn⟨Pn(u), Pn(u)⟩,

which simplifies to

cn =
⟨K(u), Pn(u)⟩
⟨Pn(u), Pn(u)⟩

=

∫ 0

−1
K(u)Pn(u)du∫ 0

−1
Pn(u)2du

.
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Moreover, from (B.20),
∫ 0

−1
Pn(u)

2du = 1/(2n+ 1) and

cn = (2n+ 1)

∫ 0

−1

K(u)Pn(u)du.

It follows that c0 =
∫ 0

−1
K(u)P0(u)du =

∫ 0

−1
K(u) du = 1 by Assumption 4(i).

Our objective function is

L =

(∫ 0

−1

K2(u)du

)(
−
∫ 0

−1

uK(u)du

)
. (B.22)

We first derive properties of the first term. Since K(u) ∈ L2([−1, 0]) admits an expansion

in terms of the shifted Legendre polynomials,∫ 0

−1

K2(u)du =

∫ 0

−1

(
1 +

∞∑
n=1

cnPn(u)

)2

du

= 1 + 2

∫ 0

−1

∞∑
n=1

cnPn(u)du+

∫ 0

−1

(
∞∑
n=1

cnPn(u)

)2

du.

Now, by the uniform convergence of the summation and from(B.21),

2

∫ 0

−1

∞∑
n=1

cnPn(u)du = 2cn

∞∑
n=1

∫ 0

−1

Pn(u)du = 0.

Moreover, ∫ 0

−1

(
∞∑
n=1

cnPn(u)

)2

du =

∫ 0

−1

∞∑
n=1

∞∑
m=1

cncmPn(u)Pm(u) du

=
∞∑
n=1

∞∑
m=1

cncm

∫ 0

−1

Pn(u)Pm(u) du

=
∞∑
n=1

c2n

∫ 0

−1

P 2
n(u) du =

∞∑
n=1

c2n
2n+ 1

,

using the result in (B.20). Consequently,∫ 0

−1

K2(u)du = 1 +
∞∑
n=1

c2n
2n+ 1

.

Now, we investigate the property of the second term in the objective function. By
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definition,

−
∫ 0

−1

uK(u) du = −
∫ 0

−1

u

(
∞∑
n=0

cnPn(u)

)
du = −

∞∑
n=0

cn

∫ 0

−1

uPn(u) du.

By the definition of the shifted Legendre polynomials and a change of variables:∫ 0

−1

uPn(u) du =

∫ 0

−1

uQn(2u+ 1) du =
1

4

∫ 1

−1

(x− 1)Qn(x) dx

=
1

4

(∫ 1

−1

xQn(x) dx−
∫ 1

−1

Qn(x) dx

)
.

Using orthogonality properties of the standard Legendre polynomials:

∫ 1

−1

Qn(x) dx =


0, n ≥ 1,

2, n = 0,

and
∫ 1

−1

xQn(x) dx =


0, n ̸= 1,

2

3
, n = 1,

we obtain:

∫ 0

−1

uPn(u) du =



−1

2
, if n = 0,

1

6
, if n = 1,

0, if n ≥ 2.

Consequently,

−
∫ 0

−1

uK(u) du =
∞∑
n=0

cn

(
−
∫ 0

−1

uPn(u) du

)
=

1

2
c0 −

1

6
c1 =

1

2
− 1

6
c1

and the objective function

L =

(
1 +

∞∑
n=1

c2n
2n+ 1

)(
1

2
− c1

6

)
.

Next, we turn to the minimization problem. Let A :=
∑∞

n=2
c2n

2n+1
, so the objective

becomes:

L =

(
1 +

c21
3
+ A

)(
1

2
− c1

6

)
.
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Observe that A is a sum of non-negative terms, i.e., A ≥ 0. Moreover, the partial derivative

of L with respect to A is:

∂L
∂A

=
1

2
− c1

6
,

which is positive whenever c1 < 3. Hence, for fixed c1 within this range, increasing A

increases L. Therefore, to minimize L, it is optimal to choose A = 0, which is achieved by

setting cn = 0 for all n ≥ 2.

Consequently, the kernel function is approximated by the first two polynomials such that

K(u) = c0P0(u) + c1P1(u) = 1 + c1(2u+ 1),

which is linear in u. By assumption, K(u) = 1 + c1(2u+ 1) ≥ 0 for all u ∈ [−1, 0], implying

that c1 ∈ [−1, 1]. The objective function becomes:

L =

(
1 +

c21
3

)(
1

2
− c1

6

)
.

The first order derivative with respect to c1 is given by:

dL
c1

=
1

6
(2c1 − 1− c21) < 0

for c1 ∈ [−1, 1], so that the minimum is achieved at the boundary c1 = 1. Therefore, the

optimal kernel function is given by:

K(u) = 1 + (2u+ 1) = 2(1− |u|), u ∈ [−1, 0].

Finally, following the similar steps as the proofs of Theorem 2 in Cheng et al. (1997), we

can show that solution of the optimization problem (13) exists.
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Online Supplement:

Optimal bandwidth selection for forecasting
under parameter instability

NOT FOR PUBLICATION

This Online Supplement is organized as follows. Section S1 provides the definitions on

locally stationary and Lp continuous. Section S2 provides the proof of Lemma 3. Section

S3 reports additional simulation results for the structural break case. Section S4 presents

an empirical application to real-time inflation forecasting using financial variables. Finally,

Section S5 details the implementation of the forecast combination methods used in the

applications on bond return predictability and inflation forecasting.

S1 Definitions

Definition 1. A triangular array of processes Wt,T (θ), θ ∈ Θ, t = 1, 2, · · · , T , and T =

1, 2, · · · is locally stationary if there exists a stationary process W̃t/T,t(θ) for each rescaled

time point t/T ∈ [0, 1], such that for some 0 < ρ < 1 and all T ,

P
(
max
θ∈Θ

max
1⩽t⩽T

∥∥∥Wt,T (θ)− W̃t/T,t(θ)
∥∥∥ ⩽ CT (T

−1 + ρt)

)
= 1,

where CT is a measurable process satisfying supT E (∥CT∥η) < ∞ for some η > 0.

Note that this definition follows from Kristensen and Lee (2023) to let an additional

term ρt appear in the approximation error. This ensures that the process Wt,T (θ) can be

arbitrarily initialized. The next definition again is borrowed from Kristensen and Lee (2023).

Definition 2. A stationary process Wt(θ), θ ∈ Θ, is said to be Lp-continuous w.r.t. θ for

some p ⩾ 1 if

(i) ∥Wt(θ)∥p < ∞ for all θ ∈ Θ;

(ii) ∀ϵ > 0, ∃δ > 0, such that

E

[
max

θ′:∥θ−θ′∥<δ
∥Wt(θ)−Wt(θ

′)∥p
]1/p

< ϵ.

1



S2 Proof of Lemma 3

Given the kernel function K, write θ̂K,b,T = θ̂b,T . As in (B.3), the estimator can be decom-

posed as

θ̂b,T − θT = −HT (θT )ST (θT ) + op(1)

= −HT (θT ) (ST (θt) +BT ) + op(1), (S.1)

where

ST (θt) =
1

Tb

T∑
t=1

ktT
∂ℓt,T (θt)

∂θ
,HT (θT ) =

(
1

Tb

T∑
t=1

ktT
∂2ℓt,T (θT )

∂θ∂θ′

)−1

,

BT =
1

Tb

T∑
t=1

ktT
∂2ℓt,T

(
θT
)

∂θ∂θ′
(θT − θt) ,

and θT lies between θT and θt. We will show that

sup
b∈IT

∥∥T 1/2b1/2+δST (θt)
∥∥ = Op(1), (S.2)

sup
b∈IT

∥∥HT (θT )
−1
∥∥ = Op(1), (S.3)

sup
b∈IT

∥∥bδBT

∥∥ = Op(b), (S.4)

for some 0 < δ < 1/2. These bounds together with (S.1) prove (B.13).

Proof of (S.2). By Boole’s inequality and Chebyshev’s inequality, we have, for any ε > 0,

P

(
sup
b∈IT

∥∥∥∥∥ 1

T 1/2b1/2−δ

T∑
t=1

ktT
∂ℓt,T (θt)

∂θ

∥∥∥∥∥ > ε

)
⩽
∑
b∈IT

P

(∥∥∥∥∥ 1

T 1/2b1/2−δ

T∑
t=1

ktT
∂ℓt,T (θt)

∂θ

∥∥∥∥∥ > ε

)

⩽ |IT | × sup
b∈IT

P

(∥∥∥∥∥ 1

T 1/2b1/2−δ

T∑
t=1

ktT
∂ℓt,T (θt)

∂θ

∥∥∥∥∥ > ε

)
⩽ |IT | ×O(b−δ) = O(1),

where the third inequality follows from the proof of (B.5) since
∥∥∥ 1
T 1/2b1/2

∑T
t=1 ktT

∂ℓt,T (θt)

∂θ

∥∥∥ =

Op(1). The final equality follows from Assumption 6.
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Proof of (S.3). Recall that

H̃T =
1

Tb

T∑
t=1

ktT
∂2ℓ̃1,t (θT )

∂θ∂θ′

=
1

Tb

T∑
t=1

ktTE

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

]
+

1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t (θT )

∂θ∂θ′
− E

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

])
:=H̃T,1

(
Ik + ∆̃T

)
, (S.5)

where ∆̃T =
(
H̃T,1

)−1 (
H̃T − H̃T,1

)
. First, (B.4) holds uniformly over b:

sup
b∈IT

∥∥∥H̃−1
T,1

∥∥∥
sp

= Op(1). (S.6)

For ∆̃T , let ∆̃t =
∂2ℓ̃1,t(θT )

∂θ∂θ′
− E

[
∂2ℓ̃1,t(θT )

∂θ∂θ′

]
. Then, for any ε > 0, , by Boole’s inequality and

Chebyshev’s inequality, we have

P

(
sup
b∈IT

∥∥∥∥∥ 1

Tb

T∑
t=1

ktT ∆̃t

∥∥∥∥∥ > ε

)
⩽
∑
b∈IT

P

(∥∥∥∥∥ 1

Tb

T∑
t=1

ktT ∆̃t

∥∥∥∥∥ > ε

)

⩽ |IT |︸︷︷︸
O(bδ)

× sup
b∈IT

P

(∥∥∥∥∥ 1

Tb

T∑
t=1

ktT ∆̃t

∥∥∥∥∥ > ε

)
︸ ︷︷ ︸

o(1)

= o(1). (S.7)

To sum up, we continue from (B.7):

sup
b∈IT

∥∥∥H̃−1
T

∥∥∥
sp

⩽ sup
b∈IT

∥∥∥H̃−1
T,1

∥∥∥
sp︸ ︷︷ ︸

Op(1) by (S.6)

1− sup
b∈IT

∥∥∥∆̃T

∥∥∥
sp︸ ︷︷ ︸

op(1) by (S.7)


−1

= Op(1).

This also implies (S.3).

Proof of (S.4). Recall that the stationary approximation of BT is B̃T , where B̃T = B̃T,1+B̃T,2:

B̃T,1 =
1

Tb

T∑
t=1

ktT

(
∂2ℓ̃1,t (θT )

∂θ∂θ′
− E

[
∂2ℓ̃1,t(θT )

∂θ∂θ′

])
(θT − θt) ,

B̃T,2 =
1

Tb

T∑
t=1

ktTE

[
∂2ℓ̃1,t (θT )

∂θ∂θ′

]
(θT − θt) .
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For B̃T,1, again, similarly as in (S.2), we have

P
(
sup
b∈IT

∥∥∥B̃T,1

∥∥∥ > ε

)
⩽
∑
b∈IT

P
(∥∥∥B̃T,1

∥∥∥ > ε
)
⩽ |IT | × sup

b∈IT
P
(∥∥∥B̃T,1

∥∥∥ > ε
)
= o(1).

Moving to B̃T,2, since for some 0 < δ < 1/2, we have

P
(
sup
b∈IT

∥∥∥bδB̃T,2

∥∥∥ > ε

)
⩽
∑
b∈IT

P
(∥∥∥B̃T,2

∥∥∥ > b−δε
)
⩽ |IT |×sup

b∈IT
P
(∥∥∥B̃T,2

∥∥∥ > b−δε
)
= O(b).

Thus, we have

sup
b∈IT

∥∥∥B̃T

∥∥∥ ⩽ sup
b∈IT

∥∥∥B̃T,1

∥∥∥+ sup
b∈IT

∥∥∥B̃T,2

∥∥∥ = Op(b
1−δ),

which implies (S.4).

S3 Additional simulation results

Table S1: Specification of DGPs: C1–C7.

DGP at bt

C1 0.9 1

C2 0.9− T−0.2 1(t ⩾ T/4 + 1) 1 + T−0.2 1(t ⩾ T/4 + 1)
C3 0.9− T−0.2 1(t ⩾ T/2 + 1) 1 + T−0.2 1(t ⩾ T/2 + 1)
C4 0.9− T−0.2 1(t ⩾ 3T/4 + 1) 1 + T−0.2 1(t ⩾ 3T/4 + 1)

C5 0.9− T−0.5 1(t ⩾ T/4 + 1) 1 + T−0.5 1(t ⩾ T/4 + 1)
C6 0.9− T−0.5 1(t ⩾ T/2 + 1) 1 + T−0.5 1(t ⩾ T/2 + 1)
C7 0.9− T−0.5 1(t ⩾ 3T/4 + 1) 1 + T−0.5 1(t ⩾ 3T/4 + 1)

S4 Forecasting inflation

Real-time price index data are obtained from the Federal Reserve Bank of Philadelphia’s

Real-Time Dataset for Macroeconomists (RTDSM), described in more detail by Croushore

and Stark (2001). We use quarterly data from 1985:Q1 to 2019:Q4. Inflation at time t is

measured as 400 × ln (Pt/Pt−1), where Pt is the GDP price index.11 Following Romer and
11For simplicity, “GDP price index” refers to the price index series for GNP/GDP. For some of the sample

the measure is based on GNP and a fixed weight deflator.
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Table S2: Forecasting performance of the local estimators for DGPs C1–C7.

h = 1 h = 5
DGP OptR OptG OptE OptT OptR OptG OptE OptT

T = 200
C1 1.092 1.040 1.105 1.112 0.891 0.878 0.904 0.908
C2 0.883 0.856 0.889 0.893 0.719 0.708 0.721 0.726
C3 0.727 0.707 0.732 0.735 0.533 0.528 0.534 0.535
C4 0.653 0.701 0.656 0.659 0.478 0.501 0.480 0.482
C5 1.063 1.024 1.077 1.087 0.837 0.826 0.848 0.851
C6 1.039 1.001 1.051 1.061 0.798 0.790 0.807 0.810
C7 1.053 1.009 1.063 1.069 0.768 0.771 0.773 0.775
T = 400

C1 1.070 1.040 1.075 1.080 0.880 0.874 0.885 0.887
C2 0.827 0.815 0.828 0.831 0.670 0.665 0.667 0.671
C3 0.730 0.718 0.728 0.730 0.498 0.499 0.500 0.500
C4 0.705 0.697 0.708 0.709 0.491 0.497 0.493 0.494
C5 1.050 1.024 1.056 1.059 0.830 0.827 0.830 0.832
C6 1.036 1.014 1.043 1.048 0.799 0.794 0.802 0.804
C7 1.024 1.001 1.028 1.031 0.783 0.782 0.782 0.782
T = 800

C1 1.042 1.025 1.047 1.050 0.876 0.874 0.875 0.878
C2 0.834 0.832 0.837 0.839 0.637 0.643 0.633 0.637
C3 0.760 0.753 0.761 0.761 0.508 0.509 0.507 0.508
C4 0.732 0.726 0.731 0.732 0.481 0.483 0.480 0.480
C5 1.035 1.017 1.039 1.041 0.828 0.830 0.826 0.829
C6 1.007 0.997 1.011 1.012 0.805 0.807 0.801 0.805
C7 1.022 1.007 1.027 1.029 0.791 0.794 0.788 0.789

Note: Ratios of MSEs against the benchmark forecasts using full-sample least square estimators. OptR:
rolling window selection method proposed by Inoue et al. (2017); OptG: optimal bandwidth selection with
Gaussian kernel; OptE : optimal bandwidth selection with Epanechnikov kernel; OptT : optimal bandwidth
selection with triangular kernel.
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Romer (2000) among many others, we use the second available estimate in the RTDSM to

compute the actual inflation and measure the forecast accuracy.12

The forecasts are computed using the auto-regressive distributed lag (ARDL) model with

time-varying coefficients:

yt+h = θ0,t + θ1,tyt−1 + θ2,txt + εt+h, (S.8)

where xt is a scalar predictor and h is the forecast horizon. The benchmark forecasts are

obtained from a simple AR(1) model by setting θ2,t = 0 in (S.8), estimated using full-sample

non-local least square. We also consider forecast combinations from models in which each

scalar predictor xt is used one at a time. In addition, we report forecasts computed with

AR(1) model estimated using local estimators for comparison.

We consider a set of predictors inspired by Stock and Watson (2003), which includes

interest rates, default spread, stock market variables, commodity prices, exchange rates and

monetary variables. Unlike GDP price index, asset prices are not revised, hence we rely

on the currently available time series. A detailed description of the list of predictors can

be found in Table S3. The initial estimation sample is from 1959:Q3 to 1984:Q4, and the

first available individual forecast is computed for 1985:Q1. We use 40 observations as the

hold-out out-of-sample to obtain the weights for forecast combination based on the DMSE.

Therefore, the forecast evaluation period runs from 1995:Q1 to 2023:Q4. We report results

for forecasts at one quarter (h = 1) and one year (h = 4) ahead.

Table S4 reports the ratio of MSEs of each model to that of the benchmark forecasts.

Apart from the full-sample least square estimator (OLS), we consider the fixed-rolling win-

dow estimator with window size 40 (R = 40), optimal rolling window selection method

proposed by Inoue et al. (2017) (OptR), and the local estimator with optimally selected

bandwidth using the the Gaussian kernel (OptG), the Epanechnikov kernel (OptE), and the

Triangular kernel (OptT ). The first row represents the AR(1) model, rows two through eleven

correspond to the model in Equation (S.8) with different predictors, and the final two rows

represent the forecast combinations of the forecasts from different predictors given above.
12For example, the first available estimate for 2019:Q4 price index is in the 2020:Q1 vintage, and the

second available estimate for 2019:Q4 price index is in the 2020:Q2 vintage. This is what we use to calculate
2019:Q4 inflation.
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Table S3: The list of predictors and variable transformation in forecasting the U.S. inflation.

Variable Description Source Transform

FFR Effective federal funds rate FRED-QD level
TmSpd 10-year minus 3-month Treasury bill rates FRED-QD level
DfSpd BAA- minus AAA-rated corporate bond yields FRED-QD level
S&P500 S&P500 composite index FRED-QD 100∆ ln
PE Price-earnings ratio for S&P500 composite stocks FRED-QD 100∆ ln
CAD Canada/U.S. exchange rate FRED-QD 100∆ ln
GBP U.K./U.S. exchange rate FRED-QD 100∆ ln
COM Moody’s commodity price index GFD 100∆ ln
M1REAL Real M1 money stock, deflated by CPI FRED-QD 100∆ ln
M2REAL Real M2 money stock, deflated by CPI FRED-QD 100∆ ln

Note: The FRED-QD data set is developed by McCracken et al. (2021) and maintained by the Federal
Reserve Bank of St. Louis. GFD refers to the Global Financial Database.

There are several issues worth mentioning. First, using local estimators improves forecast

accuracy for the AR(1) model. Gains are always significant, and are larger for one year

ahead forecast (h = 4). Second, adding additional predictor is not always useful. Choice of

predictor really matters. The commodity price index is the most reliable predictor, which

delivers the best forecasting performance. The gains also become more evident for h = 4.

Using Gaussian kernel is the best for h = 1, while triangular kernel is preferred for h = 4.

Finally, forecast combinations improve the forecast accuracy in nearly all cases, except OptT

for h = 1.

Table S5 presents forecasting evaluation results for the period up to 2019:Q4, excluding

COVID-19 observations to avoid pandemic-related distortions. The overall conclusions are

similar, with a few noticeable differences. First, using local estimators improves forecast

accuracy in all cases. Second, DMSE combining method delivers the best results. Inoue

et al. (2017)’s method is overall the best for h = 1, while using triangular kernel is the best

for h = 4. However, when we test the equal forecast accuracy between the best performing

case and the second best case (AR OptR for h = 1 and AR OptT for h = 4), the results are

only significant for h = 1. This implies that exogenous predictors are not so useful once we

control for parameter instability, especially for longer-horizon forecasts.
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S5 Forecast combination methods

Let ωi,t be the combination weight for model i at time t. For equal-weighted (EW) combi-

nations, we set ωi,t = 1/N , where N is the number of candidate models.

For the discounted MSE (DMSE) combining method (Stock and Watson, 2004; Rapach

et al., 2010), the weight ωi,t is computed according to

ωi,t =
ϕ−1
i,t∑N

j=1 ϕ
−1
j,t

, with ϕi,t =
t−1∑
s=T0

ρt−1−s(ys+h − ŷi,s+h|s)
2,

where ρ is a discounting factor, h is the forecast horizon, ys+h is the true value, and ŷi,s+h|s

is the forecast from model i. This method assigns higher weight to an individual model

whose forecasts have lower MSEs over the holdout out-of-sample period. When ρ = 1, there

is no discounting and these weights are exactly the same as Bates and Granger (1969) for

the case where the forecasts from one given model are uncorrelated. When ρ < 1, higher

weights are attached to the more recent forecast accuracy measures for each model. In both

applications, we set ρ = 0.9.

10


	Introduction
	Estimation under parameter instability
	Model and estimators
	Assumptions
	Asymptotic properties

	Optimal bandwidth selection 
	On the choice of K()
	Monte Carlo experiments
	DGPs
	Implementations
	Simulation results
	Additional simulation results

	Empirical applications
	Bond return predictability
	Yield curve forecasting

	Conclusion
	Mathematical proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Auxiliary Lemmas
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Definitions
	Proof of Lemma 3
	Additional simulation results
	Forecasting inflation
	Forecast combination methods

