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1. Introduction

Many important economic decisions are based on a forecasting model that is known
to be affected by parameter instability. It is now widely recognized that parameter
instability is a crucial source of forecast failure. For instance, full sample parameter
estimation might be inconsistent under parameter instability, results in poor out-of-
sample (OOS) forecasting performance. The empirical evidence has also been well
documented, see, for instance, equity premium forecasting (Welch and Goyal (2008)),
volatility forecasting (Inoue, Jin, and Pelletier (2021)) and macroeconomic forecasting
(Stock and Watson (1996)).

Motivated by concerns of parameter instability, forecasters often want to make pre-
dictions using the most recent data. They may do this by using a window of recent data,
which is the so-called “rolling window” forecast scheme. As rolling window estimator
is a special case of the local estimator when a flat weighting function is used (Inoue, Jin,
and Rossi (2017)), forecaster may have alternative choices of weighting functions and
need to select the tuning parameter. This paper aims to address three issues associated
with the local estimator in an out-of-sample forecasting context.

First, while the local estimator is quite popular in the applied work, it remains
unclear what types of parameter instability are allowable to achieve consistency. We
first show that under a general condition on the amount of time variation in model
parameters, the local estimator is consistent. This covers a broad range of parameter
instability considered in the literature, which include local structure break, smooth
structural change (Robinson (1989), Cai (2007)) and realization of bounded persistent
stochastic processes (Giraitis, Kapetanios, and Yates (2014), Dendramis, Giraitis, and
Kapetanios (2021)). The consistency rate depends on the amount of local time variation
and estimation becomes more precise when the amount of these variations are small.

The second and third issues are related to out-of-sample forecasting. We show that,
from an end-of-sample risk reduction perspective, minimizing the end-of-sample risk
is equivalent to minimize the regret risk (Hirano and Wright (2017)), which depends
on the weighting function and tuning parameter associated with the local estimator.
These are the two inputs forecaster has to choose. Tuning parameter determines the
effective number of observations used in the local estimator and simplifies to window
size when an indicator weighting function is used. We propose method to select the
tuning parameter by directly minimizing the regret risk. The procedure is similar to
the one proposed in Inoue, Jin, and Rossi (2017) for rolling window selection, but we



show that the asymptotic optimality holds when a generic weighting function is used
for local estimation and a general loss function is used for forecast evaluation. The
optimality does require stronger condition on parameter instability, but as we point
out, this covers all cases considered in the literature.

Finally, we provide analyses on the choice of the weighting functions, which has
been less addressed in the literature. Our analyses are based on the limiting behavior
of the regret risk, which reflects the usual bias-variance trade-off. We show that, when
estimation variance from the local estimator dominates, the regret risk converges in
distribution to a zero-mean random variable. In this case, both the convergence rate
and the term related to the weighting function do not depend on the types of parameter
instability. When estimation bias dominates, regret risk converges in probability to
a non-zero constant. In this case, both the convergence rate and the term related to
the weighting function are related to the property of parameter instability, making the
choice more involved. However, this still provides some guidance on the implementation
of tuning parameter selection procedure.

The theoretical analyses are examined through an extensive Monte Carlo study using
a linear predictive regression model. We find that, the local estimator performs well
under various types of parameter instability, but the estimation quality does depend on
the amount of local time variation. In terms of forecasting performance, we find that
our tuning parameter selection procedure works pretty well. In general, using all but
downweighting the data is preferred.

We present four empirical applications on forecasting inflation, growth and inflation
shocks, house prices and bond returns. These applications illustrate a variety of envi-
ronments (target, validity of assumptions, forms of regret risk, estimation methods, loss
functions). We would like to examine whether using local estimator with optimal tuning
parameter selection improves forecast accuracy compared to well-known benchmark
forecasts. In addition, we are more concerned on whether choice of weighting function
matters in these applications.

Our empirical results are promising. Using local estimator with optimal tuning
parameter selection procedure generally delivers gains. Choice of weighting function
does have an impact on forecasting performance, but using a flat weighting function is
generally outperformed by alternative weighting functions. We briefly summarize our

main findings below.

(i) Inthe firstapplication, we consider inflation forecasting for the United States (U.S.)
and Canada. We find that a simple autoregressive distributed lag model performs



quite well for Canada and could still achieve gains if certain predictor is used
for U.S., such as the growth rate of civilian employment. In terms of weighting
functions, we find that using all but downweighting the data is preferred.

(ii) Inthe second application, we consider the use of predictive quantile regression to
forecast how specific features of the macroeconomic shock distributions respond
to systemic risk. We find that TED spread (differences between 3-month LIBOR rate
and 3-month treasury bill rate) is a useful predictor for left tail information about
growth shocks, as well as inflation shocks for both left and right tail information.
We again find that using all but downweighting the data is preferred.

(iii) We examine the international predictability of real house price changes in the
third application. We find that, mixed frequency data sampling regression model
(MIDAS) performs better particularly when the specification is based on valuation
ratio. In terms of weighting functions, using only the recent data and downweight-
ing them is preferred.

(iv) We consider international excess bond return predictability in the fourth appli-
cation. We find that gains are quite substantial and significant in many cases
compared to benchmark forecasts from principal components of the global yield
curve. We find that using only the recent data and downweighting them is pre-
ferred.

The rest of the paper is organized as follows. Section 2 presents the setup and
local estimation. Section 3 discusses selection of the tuning parameter and choice
of weighting function from an end-of-sample risk reduction perspective. Section 4
provides Monte Carlo study on the theoretical analyses. Section 5 presents our empirical
applications, and Section 5 concludes. Data descriptions are provided in the Appendix.
Technical assumptions, auxiliary results lemmas and the proofs of the main theorems
are provided in the supplementary material.

NOTATION: |-|| is the Euclidean norm. |-| denotes the associated norm when - is one
dimensional. f ® (x) = % denotes the ith derivative of function f(-) with respect to
x. xn = Op(y,) states that the vector of random variables x; is at most of order y,, in

probability, and x, = 0p(y,,) is of smaller order than y,, in probability. x, < y,, states
that xn/y, = Op(1). The operator £ denotes convergence in probability, and 4, denotes

convergence in distribution. E7[-] = E[-|F7] is the conditional expectation operator,
where Fr is the information set available at time T.



2. Estimation under parameter instability

Let { y;}+ be the scalar variable of interest and {X}}; be a s x 1 vector of predictors (which
may include lags of y;). We wish to forecast y,1(1 < h < c0), given the knowledge of
Xr!. The forecast Yr+pr s created using a rule: yr.p7(0), where 6 € © RKisa kx I-
dimensional model parameters. The model parameters are estimated via M-estimation
minimizing

T

A 1
) Or =argmin — » {40),
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where €4(0) = L( Y141, 5’t+h|t(9)) is some in-sample loss function.

EXAMPLE 1. Consider the linear predictive regression model:
v/ _
.yt+h_Xte+Et+h) t_l)z)"')T_h)

where {€,,1} 15 a disturbance term. Then, OLS estimator is equivalent to (1) when {+(-) is the
mean squared error 1oss: £4(0) = (Vp4p, — X;G)z.

It is well known that parameter instability plagues commonly used forecasting mod-
els and predictive content is unstable over time (Rossi (2013)). To handle the instability
issues and remain agnostic on the types of parameter time variation, we assume that the
time-varying parameters are modeled as the function of scaled time point u = t/T € (0, 1]

(2) 0u =0(t/T) =0(u), 6():(0,1] — ©.

As explained in Robinson (1989), the requirement that time-varying parameter is a
function of scaled time point is essential to derive the consistency of the nonparametric
estimator, since the amount of local information on which an estimator depends has to
increase suitably with sample size T.

Since the forecasts and their evaluations are based on 6(1)2, we consider a local

I'We only consider direct forecast when h > 1.

2The target yr,; depends on parameter 6(1 + 1/T), which is different from 0(1). However, under
Assumption A4(i), the local time variation is asymptotically negligible, we shall treat (1) as the parameter
related to the target.



estimator for 6(1) defined by
. 1<
(3) Ok pr = argmin — kerl:(0)
K) ,T ee @ Tb ; )

where kv = K((t - T)/(Tb)), K(-) is a weighting function, and b = br > 0 is a tuning
parameter satisfying b — 0, Tb — oo as T — oc. Different specifications of K(-) lead
to different types of forecasting schemes. If k;7 = 1 for all ¢, we are back to the non-
local estimation as in (1). If K(u) = 1{_1<;<q}, We are in the rolling forecast scheme with
window size | Tb| (Giacomini and Rossi (2009)).

Local estimator like (3) is widely used in the out-of-sample forecasting context under
parameter instability. Typically, it (mainly rolling window estimator) is used under the
case when parameters are assumed to have break points, possibly at unknown dates
(Pesaran and Timmermann (2007)). In this case, (2) is a piecewise continuous function
on (0, 1]. It can also be used when (2) is twice continuously differentiable on (0, 1] (Inoue,
Jin, and Rossi (2017)). What are the minimum requirements on (2) to achieve consistency
of (3)?

For the {th elements in (2), consider the condition

4) 10¢(t/T) - 0o(s/T)| < ¢ (\t;s|>v’ t,s=1,2,---,T,

for some 0 < vy < 1and ¢ is a positive bounded constant. This is similar to a Holder
continuous condition. The amount of local time variation vanishes asymptotically as
T — oo. Chen and Hong (2016) derives the consistency of estimator like (3) for GARCH
models, but consistency rate is not provided. The case when 0(¢/T) is twice continuous
differentiable on (0, 1] (Robinson (1989), Cai (2007)) also satisfies (4). Giraitis, Kapetanios,
and Yates (2014) show that (3) can handle realization of persistent bounded stochastic
processes. For example, realization of bounded random walk process 5th = \/LTW’ where

Avy idd. (0,1) satisfies (4) with y = 1/23. Similar condition is also used in Li and Miiller
(2009) for unstable generalized method of moments models. They consider both the
case of realization of bounded random walk process and local one-time break of the
form: 0¢(-) = arlyy >, Where e € (0,1] and ar = o(1) as T — oc.

3As shown in Dendramis, Giraitis, and Kapetanios (2021), such process satisfies the condition |§e}t -

—~ s\ Y .. e .
O¢,s| < &oyts (@) , where &g ¢ has a thin-tailed distribution: P<|Eg)ts\ > w) < exp (— co|w|°‘), w >0,

for some ¢y > 0, > 0, which does not depend on ¢, t, s and T. Then, we could always find a generic ¢,
such that realization of the process satisfies the condition (4).



In the Appendix, we provide a formal technical discussion on the properties of the
local estimator (3). We adopt the framework of locally stationary process, which has
been increasingly popular in the recent time series literature (Chen and Hong (2016),
Karmakar, Richter, and Wu (2022), Kristensen and Lee (2023)). Under (4) and other
regularity conditions, 6 K,b,T 1S consistent: 6 K,b,T 24 0;. In addition, the consistency
rate is given by

-] sl

whereb — 0, Tb — cocas T — oo. The consistence rate is inversely related to y. Relatively
large vy implies that local changes are small, the estimation bias vanishes at a faster rate.
When v is too small (large local changes), consistency rate gets distorted. When (2) is
assumed to be differentiable, it can be easily shown that the consistency rate is given
by (TH)y Y2 +p (provided that K(-) is symmetric).

3. Out-of-sample forecasting

To implement the local estimator (3), a forecaster faces a concrete decision problem
as she has to choose weighting function K and tuning parameter b. In order to under-
stand the implications of selecting K and b, we will analyze the end-of-sample risk
E7 (U144 (0 p, 7)) Provided that €,(6) is twice continuously differentiable w.rt. 6 € ©, a
second-order Taylor series expansion around the true 0(1) gives (ignoring the smaller
order terms)*:

(5)
A My (01) 1, 0207, (01)
Urin(Ok 1) = Uran(OD) + 35 O 7= 00) + 5 @ b7~ 01) ——E 05 (B 7 - O0),

where 81 lies between 6 K,b,T and ;. Taking conditional expectations on both sides we
then find

. sy (BN -
ET(Crin(Ok p,1)) = ET(L14n (1)) +ET(—ng, ! ) Ok,p,r - 61)
ﬁ_/ (.
R} R?
T
1 . ! az€T+h(§1) A
+= - = T+h 7l - 01).
©) SOk - 01) Er (ST ) (B b7 - 00)

4Following Granger (1969) and Weiss (1996), we use the same loss function for parameter estimation
and out-of-sample forecasting (O0S) evaluation. However, in some applications, there may be gains from
using an alternative loss function for estimation, see Hansen and Dumitrescu (2022).



We see that the end-of-sample risk can be decomposed into three components. The
component R%w is related to the future risk, which has nothing to do with parameter esti-
mation. We define the regret risk (Hirano and Wright (2017)) when using the parameter
estimates 6 K,b,T"

o (0 (B) 1. 0%, (01 5
() Re(K, b) = Er (=278 ) Ok b r-01)+ 5 Ok, 7 -00) Br( B 71 ) (8, 7-00).

If we further assume that®:
o (@)Y _
T ae/ - Y

the regret risk defined in (7) simplifies to (ignoring the constant 1/2):

5 0%y, (B1)Y 4
® Re(I )= Crr =0 Fr (g ) O =00

Thus, minimizing the end-of-sample risk is equivalent to minimize Rt(K, b).

3.1. Selection of the tuning parameter b

Since (3) is a nonparametric estimator, it is well known that the tuning parameter

b is essential in risk reduction (trade-off between reducing bias and variance). We

now introduce our tuning parameter selection procedure. Suppose that the weighting
~ ~ — 2 .

function K is chosen. Write BK,b,T =0y 7 and wr (91) = “ge;ahe(,el). We consider to choose

b by simply minimizing the regret risk (8) over the choice set Ir:

~

(9) b := arg min (éb,T -01) wr(6;) (éb,T -01).
be It
Notice that, the cardinality of the set |I7| must shrink to zero as T — oo, since the
consistency of éb,T requires b — 0.
We first drive the rate of the optimal tuning parameter implied by (9), which is
characterised in the following theorem:

THEOREM 1. Under Assumptions B1(i), B2, B3 and B4(i), the optimal tuning parameter b

1
obtained by minimizing (9) is of order T 2v*1 in probability for some 0 <y < 1.

. 1
Theorem 1 shows that, the optimal tuning parameter b should be equal to ¢T" ¥,
as T goes to infinite, for some finite constant 0 < ¢ < co. This implies that the effective

SFor the model considered in Example 1, this implies that E[er,;|F7] = 0. so the forecast error is
assumed to be serially uncorrelated.



number of observations | Th| is inversely related to y: when the local time variation in
0(t/T) is large, the effective number of observations | Tb| should also be lower.

Since éb,T is consistent (Lemma C1), we have 0; R 0. Following Inoue, Jin, and Rossi
(2017), we consider to use the local linear estimator to approximate the unknown 6(1).
The local linear estimate proceeds as follows. Suppose that 6(t/T) is twice continuously
differentiable, a second-order Taylor expansion of 6(¢/T) around the (rescaled) end-of-
sample point 1 gives

(10) 0(t/T) = 0+’ (*— TT) = (57

where 0 = 0(1), 0’ =0M(1) and 0’ =0 (c), where c lies between 1 and t/T. The local
linear estimator is defined by the minimizer of

11 kirl:(0+60'(t/T -1
1y odmn o sz kirt: (6 +0/(4/T - 1),

where the weights ke = ('}g) are computed with a tuning parameter b such that

b—0and Tb — coas T — oo.
Let 07 be the collection of the first k x 1 elements of the minimizer of (11), we then
replace the unknowns in (9) with the local linear estimator 8, which leads to a feasible

selection criteria:

~

(12) b: —argmln (ebT 07)’ wT(GT) (GbT 7).
GIT

The asymptotic optimality of the feasible selection procedure (12) is formally stated
in the next theorem.

THEOREM 2. Under Assumptions BI-B5, choosing bby (12) is asymptotically optimal in the
sense that

©,1 - 6r)' wr(9r) @p,7 - 0r) = inf By, - 00" wr (01) Oy 7 - 61
T

where O is the local linear estimator from (11) with tuning parameter b.

Theorem 2 provides an extension to the ones in Inoue, Jin, and Rossi (2017) by show-
ing that the asymptotic optimality holds for a generic weighting function when using (3)



and a general loss function for forecast evaluation. The asymptotic optimality implies
that b chosen from (12) yields the same forecasts obtained from the true optimal tuning
parameter by minimizing the infeasible objective function in (9). The key to establish
this result is to use the fact that the asymptotic bias from local linear estimator vanishes
at a faster rate than local estimator in (3). As in Assumption A5, the requirements for
two tuning parameters involved: b and b are rather intuitive. We could first let TH° — 0
to obtain the best possible convergence rate for 67. Then, the remaining conditions
hold when b goes to zero at a faster rate than b.

REMARK 1. The condition for 0(t/T) imposed on Theorem 2 is stronger than Theorem 1 since
it requires that 0(t/T) is twice continuously differentiable. However, this condition is not
that restrictive as it covers particular the ones considered in Giraitis, Kapetanios, and Yates
(2014) and Dendramis, Giraitis, and Kapetanios (2021), where (3) is used to estimate a path
of the stochastic time-varying coefficient. To see this, suppose that 0(t/T) is a realization of

a bounded random walk process: \/LT&’ where A&y = vy iid. (0,1). Simple algebra gives

0(t/T) = \/% %at. We know that Vii‘it = 0p(1), this implies that 0(t/T) = Ct/ %, where Cy is
a positive bounded constant.

3.2. Implications on the choice of K

Another input forecaster has to choose is the weighting function K. Consider the fol-
lowing three candidate choices of K(u):

2 u? 3
(13) Ki(w) = Ly 1<u<ops Ky(u) = \/?T exp ( - 7)ﬂ{u<0}; K3(u) = 5(1 - uz)ﬂ{_1<u<o}~

K;(u) leads to a rolling window estimator with window size | Tb|. Ky(u) imposes an
exponential-type downweighting scheme and K3(u) implies a hyperbolic type down-
weighting scheme. Although K;(u) used to dominate in the applied work, there has
been a growing interest in using other weighting functions. For instance, K»(u) has
been used in macroeconomic forecasting context (Kapetanios, Marcellino, and Venditti
(2019) and Dendramis, Kapetanios, and Marcellino (2020)). K3(u) is recommended in
equity premium forecasts as in Farmer, Schmidt, and Timmermann (2022). A graphical
illustration of the weighting functions in (13) is provided in Figure 1. For K (u) and K3(u),
the tuning parameter b determines the number of observation used in (3). For Ky(u), b
determines how fast the weights decay.

We shall discuss the choice of weighting function based on the limiting behavior of



the regret risk R7(K, b). Since R7(K, b) is related to éK, b, — 01, in Lemma C1, we show
that

Ok p,r-01= —HI,IT(el) (S, +Ba,T),

where

T 22,(601) T T

0L:(6(t/T)) 02¢,(8y)
H,r(01) = ZktT 30007 7 LT szk tT; Bor =7 Z tT aetae} (61-6(#/T)),
=1

and 0, lies between 0 K,b,T and 0;. 6 K,b,T — 1 can be decomposed into a variance term
H}l(el)ST and a bias term H}l(el)BT. Thus, the limiting behavior shall be determined
by whether the variance term or the bias term dominates. This is formally stated in the
next theorem.

THEOREM 3. Suppose that Assumptions B1(1), B2, B3, B4(i) hold with b — 0 and Tb — .
Then, it holds that

(i) If TY2pY2*Y — 0, we have
Tb- Rp(K, b) ~% o k222 wr (01) 2512,
where Go g = Je K2(w)du, Z ~ N(0, I ) and X1 is defined as in Lemma CI;
(i) IfTYV2bY2YY 5 o0, we have
b2 - Rp(K, b) £ u2 €' wr(0))€,

where w, g = [ uYK(w)duand C = (cy, - -, CE)/ is a collection of Holder constant given
in Assumption BI(1);

(iii) If TV2p1/2 < b™Y, we have
Tb- (Rr(K, b) + 1243 ¢ € wr(01)€) —% do I} 7 wr (07) 75},
where w, g, C and ¢o g are defined as in (1) and (i1).

The limiting behavior of regret risk reflects the usual bias-variance trade-off. Con-
sider first when TY2pl/2¥Y _; 0, In this case, the bias introduced by (3) vanishes asymp-
totically. The rescaled regret risk converges in distribution to a random variable centered

10



at 0°. As estimation variance dominates and $o,k affects it, we clearly prefer a weighting
function which has smallest ¢q . For the weighting functions considered in (13), we
have gk, = 1, do k, = 0.5642 and ¢q g, = 1.2. In this case, there is a clear winner. Kj ()
is preferred: all data should be used and downweighted.

If TY2p2+Y — o, estimation bias from (3) dominates and regret risk converges to a
non-stochastic term which is not 0. Since we do not know y, b may be set improperly so
we are in case (ii) described in Theorem 3. In this case, w, x = [ uYK(u)du plays a role
so we clearly want to choose a weighting function which has smallest p, k. Consider
the case when y = 1. We have uiKl = 0.25, H%,Kz ~ 0.637 and H%,Kg = 0.141. Then, we
may expect that, if the bias term dominates, K3(u) would be preferred: only recent
data should be used and downweighted. In the third case, (Th)Y2 and b™Y diverge at the
same rate, the rescaled regret risk converges in distribution, but estimation bias is still
present. This implies that both ¢g x and p, g matter.

REMARK 2. Using a similar expansion asin (8), Oh and Patton (2021) analyze the OOS forecast
accuracy from both the local and non-local estimator. They argue that, (8) is dominated by the
estimation error in the local estimator, and b determines the usual bias-variance tradeoff. Yet,
the analysis above show that under certain condition on b, (8) is asymptotically dominated by
the estimation variance in the local estimator.

Theorem 3 indicates that choice of weighting function is related to y. In addition,
application of Theorem 1 also requires the knowledge of y. However, vy is unknown in
practice. In both Monte Carlo study and empirical applications, we fix y = 1 and thus
b = cT71/3, ¢ is selected by minimizing the regret risk (12). This implies that we may
fall into cases (ii) and (iii) in Theorem 3, but the regret risk converges to a non-zero
constant at the slowest possible rate. As effective number of observations are of order
T2/3  a relatively larger | Th| would also be useful to reduce the finite sample variability
of the regret risk.

4. Monte Carlo experiments

We now turn to the Monte Carlo experiments of our analysis in section 2. The DGPs are
based on a bivariate VAR(1) as in Pesaran and Timmermann (2007) and Inoue, Jin, and

®Notice that when wr(6;) is idempotent matrix, the asymptotic distribution has a more elegant
expression, since Z'wr (01)Z ~ x?, where the degree of freedom is given by trace (wr(61)).
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Rossi (2017):

kR
Xt+1 0 09 Xt £3tc+1
where the error terms (ag:rl, s’tcﬂ)’ are generated from N(0, I).

In DGP 1, the parameters are constant over time: a; = 0.9 and b; = 1 for all ¢. In DGPs
2-4, we have a one-time local break in these two parameters: a; = 0.9 - ﬁﬂ(t > nT +1),
by = 1+ ﬁ]l(t > niT + 1), where m = 0.25, 0.5, 0.75, respectively. DGPs 5-12 use the
smooth time-varying parameters (Assumption A4(ii) is satisfied). In DGP 5, we set
a; = 0.9 - 0.4(¢/T) and by = 1+ (t/T). In DGP 6, we set a; = 0.9 - 0.4(t/T)% and b; = 1+ (t/T)2.
In DGP 7, we set a; = 0.9 - 0.4 exp(-3.5t/T) and b; = 1+ exp(-16(t/T - 0.5)). In DGPs
8-12, we consider various degree of smoothness in time-varying parameters. We first
generate v;; = (1- L)l‘deit, where €;; irid. N(0,1/(100%)). Then, we generate &, from the
random walk model: A&;; = v;;. Finally, we set a; = O'%Ma'—lthi'\ and by = £54/V/T.

1<j<t 1615
We consider d = 0.51, 0.75, 1, 1.25, 1.49 for DGPs 7-11 respectively, which correspond to
the setting where y = 0.01, 0.25, 0.5, 0.75, 0.99.

We consider the following predictive regression model:

_ /
Ve = X0t + €441,

where X; = (y;, x¢) and 0; = (at, by)'. The model parameters are estimated by the local
least square (LS):

T-1 T-1

. 1

Ok b1 = ( > ktTXth/f> ( > ktTXtJ’t+1>>
=1 =1

where the weights k;r = K (%) are computed from a weighting function K(u) with
tuning parameter b. We consider three different choices of weighting functions as
discussed in section 2.2:

2

2 u 3
(15) Ki(w) = Ly 1<u<ops Ky(u) = E exp ( - 7)ﬂ{u<o}; K3(u) = 5(1 - uz)ﬂ{_1<u<o}~

Of course, when k;7 = 1 for all ¢, we are back to the non-local full sample LS estimates.
The forecasts are evaluated by the mean squared forecast error (MSFE) loss, and the

12



regret risk becomes

(16) R(K, b) = Ok p, 7 - 01)' <XTX6"> (O, b, — 01)-

Notice that, in this case, Assumption Al(ii) implies that the forecast error is a M.D.S.:
E[e44+1|F¢] = 0. The true parameters 0(1) in R(K, b) are approximated by the local linear
estimator, which are the first k x 1 elements of the following:

H

-1 -1

o7, é/T(l))’ = ( 7~<tTZtZ§> ? ( kerZiy t+1> )
t t

)ﬂ

Il
—
l
—=

where Z; = [X], X;(L}I)} "'kr=K (%) are computed from a weighting function K(u)
with tuning parameter b. We use the same weighting function used for 0 K,b,T to compute
61 and b is selected by the rule-of-thumb method: b = 1.06T™V/5, For b, we set b = cT"/3
and select ¢ by minimizing R(K, b) using a course grid of width 0.05 from 1 to 5.

We first evaluate the performance of the local LS estimator under various types
of time variation as in DGPs 2-12. The number of Monte Carlo simulations is set to
5,000 and four different sample sizes are considered T = 100, 200, 300, 400. Table 1
reports the average of mean absolute deviations (MADs): Ai/[ Z%:ﬂég’ BT~ 0| for both
a; (upper panel) and b; (bottom panel). For each DGP, we consider all the weighting
functions in (15) and the tuning parameter b is selected by minimizing (16). Overall, the
performances are quite satisfactory as MADs decrease as sample size increases. It is
clear from DGPs 8-12 that MADs also decrease as y increases, indicating that estimation
gets harder when changes are more frequent. Finally, in terms of choices of weighting
function, we see that using exponential type weighting function (Ky(u)) is generally
preferred for by, but in terms of a; parabolic type weighting function (K3(u)) is better
for DGPs 4 and 9-12.

We then evaluate the performance of the out-of-sample prediction of yr.; over 5000
Monte Carlo simulations. The benchmark forecasts are generated from y .7 = X}éT,
where 07 is obtained from non-local LS estimator (when all the weights are equal to 1:
ks = 1). For comparison, we also consider rolling window forecasts with rolling window
size equal to 40. Table 2 report the ratios of the RMSFEs (square root of MSFEs) relative
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to the benchmark forecasts:

\/Zm— YT - u’i’TIr’l+1|T)2
\/Zm— YT - J’T+1|T)2

)

where 5/177"1+1|T is the benchmark forecast and jfgwnﬂlT are the forecasts from using local
estimators. If the ratio of RMSFEs is less than 1, the forecasts generated from local
estimator is more accurate than the ones from non-local estimator. Entries shaded in
gray indicate the best performing model.

Table 2 summarizes the results. First, all of the forecasts generated from local
estimator are more accurate than the ones from non-local estimator when there is time
variation in model parameters. One exception is DGP 8 when T = 100. In this case, the
time variation is too rough and estimation may not be precise when sample size is small.
Of course, when the parameters are constant over time (DGP 1), the non-local estimator
is more efficient and forecasts are more accurate. Interesting, for DGP4, when the break
occurs close to the time when forecasts are made, either using fixed rolling forecasts or
optimal selection with K3(u) is the best, indicating that not using all data is useful. This
is also true for DGP3 when sample size is small (T = 100). When the time variation is a
quadratic function of u = t/T, using Kj(u) is always the best. For all the other cases (34
out of 44), using exponential type weighting function (K, (u)) is better than others, which
implies that it is more likely that using all data and downweighting them is preferred.

5. Empirical applications

We present four empirical applications. First, we consider forecasting inflation in the
United States (U.S.) and Canada. Unobserved component model with stochastic volatility
(UCSV) originally proposed by Stock and Watson (2007) is a well-known benchmark for
forecasting U.S. inflation. We would like to investigate whether local estimation of a
simple distributed lag model would lead to accuracy gains compared to this benchmark.
In addition, as the UCSV model is proposed for U.S. data, we also want to examine
whether same conclusion holds for Canada.

Our second application considers forecasting macroeconomic shocks using system-
atic risk measures. Recent Covid-19 crisis has shifted interests to the tails of macroeco-
nomic variables rather than the means (Carriero, Clark, and Marcellino (2022) and Clark
et al. (2023)). We use a predictive quantile regression model to forecast how specific
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features of the macroeconomic shock distribution respond to systemic risk. Compared
to Giglio, Kelly, and Pruitt (2016), we investigate not only the left quantiles of industrial
production shock, but also inflation shocks in both left and right quantiles. In addition,
we also examine whether using local estimator could improve tail forecast accuracy.

Our third application focuses on forecasting real house price changes for five indus-
trialized countries: U.S., Canada, France, Germany and Australia. Ghysels et al. (2013)
use several model specifications to examine in-sample predictability of real estate price
for U.S., but out-of-sample (OOS) forecasting is only conducted for real estate investment
trusts (REITs). From a macroeconomic perspective, residential real estate sector is a
key driver of economic growth and plays a dominant role in business cycle variation
(Leamer (2007)). Thus, it is of great interests to investigate the OOS forecasting perfor-
mance for real house price changes. In addition, estimation method is also different
from the previous two applications, as nonlinear models are used.

We consider bond return predictability in our fourth application. Treasury bonds
play an important role in many investors’ portfolios. Recent literature (Gargano, Pet-
tenuzzo, and Timmermann (2019) and Borup et al. (2023)) has documented evidence
of time variation in OOS bond return predictability for one-month (nonoverlapping)
return data. We would like to examine there is time variation in 12-month overlapping
return predictability. Overlapping return data have been used in many existing studies
such as Cochrane and Piazzesi (2005) and Liu and Wu (2021). In addition, as explained
in Bauer and Hamilton (2018), overlapping data may introduce temporal dependence in
the forecasting errors. Assumption Al(iii) may fail and we would like to see how our
methods perform in this case.

Across these applications, for the local estimation method, we consider three differ-
ent choices of weighting functions as in (15):

2 u? 3
Ki(w) = T1ey<qp  Ko(w) = Jon exp (- 7)1{u<o}, K3(u) = 5(1 - uz)]l{_1<u<o}-

It is again worth mentioning that all data are used when K, (u) is used, but certain
data points are discarded when either K;(u) and K3(u) is used. The tuning parameter
b controls the rate of how fast the weights decay for K»(u). For K;(u) and K3(u), b
determines how many observations are used for local estimation.

Except for the second application, the forecast evaluations are all based on the MSE
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loss function. Then, the regret loss becomes

1) R(K, b) = Og,p,7 - 01)' (Xr(8)X7(8)) O 7 - 00)-

Note that the weighting matrix X7(81)X7(0;) may depend on the parameters. Since
quantile regression model is used in the second application, the forecast evaluations are
based on the checkloss function €7 (0) = e;+1(0)(t-1y,, (9)<0})> Where €441(60) = Vi1 —-X101
and Tt is the quantile of interest. Then, the regret loss becomes

; 00%,,(01)\ 4
(18) R(K, D) = Ok b7 - 80 Br (=35 ) (O 7~ 00).

As the check loss function is not differentiable, we consider the smoothed quantile

regression framework in Fernandes, Guerre, and Horta (2021). We use the in-sample

. 02,4 (0 . . . .
counterpart to approximate ET< atéé(erl) ) . More details are provided in Section 5.2.

Once the weighting function is chosen, we set b = ¢T3 and use ¢ to obtain our
final forecast by minimizing R(K, b) as defined in (17). When data are sampled quarterly
(Sec. 5.1 and Sec. 5.3), we let ¢ range from 1 to 5 with a course grid of width 0.05. When
data is are sampled monthly (Sec. 5.2 and Sec. 5.4), we let ¢ range from 1to 7 with a
course grid of width 0.1. We replace the unknown 07 with the corresponding local linear
estimator as in (11). We use the same weighting function for local linear estimator and
use a rule-of-thumb method for b by setting b = 1.06T~%/5,

Apart from the local estimator using weighting functions in (15) with optimal tuning
parameter selection, we also consider two alternative estimators. The first one is the
non-local estimator when all the weights in (3) are set to 1, so the parameter instability is
completely ignored. The second one is the standard rolling window estimator with fixed
window size. Following Stock and Watson (2003), when data is sampled quarterly, the
window size is set to 40 (10 years of quarterly data). When data is monthly, as common
in finance applications (Farmer, Schmidt, and Timmermann (2022)), the window size is
set to 60 (5 years of monthly data).

The overall forecasting performance are presented in Tables 3-11. The benchmark
forecasts are different across applications and are stated in the following subsections.
The entries related to the benchmark forecasts are the losses in levels. For all other
entries, they are the ratios of losses relative to the benchmark forecasts. Values below
1indicate that the corresponding specification performs better than the benchmark.
Entries shaded in light cran are the ones perform better than the benchmark in each

16



specification and gray shaded entries are the best performing specification.

Finally, to provide a rough gauge of whether differences in accuracy are significantly
different, we apply the Diebold and Mariano (1995) (DM) test for equal forecast accuracy
with fixed smoothing asymptotics as in Coroneo and Iacone (2020) , which is shown
to deliver predictive accuracy tests that are correctly sized even when the number of
out-of-sample observations are small.

5.1. Forecasting inflation

The target variable is the annualized inflation rate: y; = 4001n (Q¢/Q;-1), where Q; is the
implicit price deflator of the gross domestic product (GDP). The benchmark forecasts
are obtained from the UCSV model:

yt:Tt+€g/) Eg/’“N(O;eht);
T =Tt e, & ~ N(0, €),
ht = ht—l + 5?: eltl -~ N(O; w%))

8t=8t-17t 5?; 8? - N(O) wé))

with initial conditions Ty, hg and gy as unknown parameters. We assume Normal priors

for all model parameters: wy ~ N(0, 0.22), wg ~ N(0, 0.22), hoy ~ N(0, 10), go ~ N(0, 10),

and 19 ~ N(0, 10). The model is estimated using Bayesian methods in non-centered

parameterization and then transform back to the centered parameterization to perform

predictive simulation. Estimation details can be found in Appendix B in Chan (2018).
Alternatives forecasts are obtained from ARDL( p, g) model:

p-1 q-1
(19) Y =ct Z PVt Z BeXt-g + Upt1,
{=0 {=0

where X; is a scalar predictor. We set p = 4 when non-local estimator is used and p =1
for local estimator (fewer lags when parameter instability is taken into consideration).
qis set to 1in all cases.

The data set is collected at a quarterly frequency, with a sample period of 1962Q3-
2023Q1. The choices of predictors follow closely from Inoue, Jin, and Rossi (2017) and
consist of asset prices, measures of real economy activity, price indices and monetary
measures. For U.S., both the target variables and predictors are taken from Fred-QD
(McCracken, Ng et al. (2021)). The data for Canada are taken from FRED and Stevanovic
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et al. (2021). Tables E1-E2 lists mnemonics (in the associated database), data description
and data transformation for all the predictors. The initial estimation sample runs from
196203 to 1984Q4 and the first available forecast is for 1985Q1.

To avoid the complication due to Covid-19, we first consider results from the evalua-
tion period 1985Q1-2019Q4. Tables 3-4 report the overall forecasting performance. Let
us start by commenting the results obtained for U.S. Overall, UCSV is indeed a tough
benchmark as there are many cases when UCSV performs better than the alternative
specifications. However, there are also some cases when local estimator with optimal
tuning parameter selection improves forecast accuracy compared to the benchmark.
The best result is achieved when the changes of employment numbers (CE160V) is used
as a predictor. It already provides benefits when CE160V is added to an AR(4) model,
and using K, (1) with optimal tuning parameter selection gives additional benefits. Ky (1)
is also useful when stock return (S&P 500), volatility (VXOCLSx), some measures of real
economic activity (consumption, investment and industrial production) and monetary
measures are used.

Moving to the results obtained for Canada, some different patterns clearly emerge.
Using K, (u) with optimal tuning parameter selection always improves forecast accuracy
compared to the benchmark UCSV model. The best result is archived when stock return
(TSX_CLO) is used as the predictor. Interesting, when using non-local estimator for the
ARDL(1,1) model, they are always outperformed by the benchmark. This clearly shows
that ignoring issues related to parameter instability can be detrimental to forecast
accuracy.

Interestingly, results from U.S. show that changes of employment is a useful predic-
tor, indicating the traditional backward looking Phillips curve type of forecasting model
is useful. However, the results do not hold when we use the unemployment directly
as the predictor. To get a better understanding on the source of gains, we evaluate
the models’ forecasting performance over time by plotting the associated cumulative
sum of MSFEs over time for these two predictors in Figure 2. The solid line shows the
results obtained from using non-local estimator and the dashed line shows the results
from local estimator with optimal tuning parameter selection when K, (u) is used as
the weighting function. When changes of employment is used, the gains from using
local estimator is initially negative. Non-local estimator performs better than the local
estimator before 2010, but it is outperformed by the local estimator afterwards. When
unemployment rate is used, using non-local estimator improves forecast accuracy com-
pared to the UCSV benchmark during the period 1990-1996. However, the gains become
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negative afterwards. Using local estimator is not that useful as the gains are always
negative.

Another interesting findings are when monthly inflation (changes of CPI) is used, it
performs better for Canada but not for U.S. We again plot the associated cumulative
sum of MSFEs over time in Figure 3. The solid line shows the results obtained from
using non-local estimator and the dashed line shows the results from local estimator
with optimal tuning parameter selection when K (u) is used as the weighting function.
For U.S., even though the gains remain negative for the entire evaluation period, the
forecasting performances are relatively stable over time. However, the performances
for Canada change marked after 2010. The gains from using local estimator mostly come
from that period. When non-local estimator is used, gains are positive from 2004 to
2008, but quickly becomes negative during 2009-2010.

In Appendix F, we report the results from the evaluation period 2020Q1-2023Q1.
Tables F1-F2 presents the results for U.S. and Canada, respectively. Overall, as clearly
shown in the first row of each table, RMSFEs from UCSV model are larger compared
to the pre-Covid, which implies that it is difficult to get precise inflation forecasts in
this turbulence time. For U.S., non-local estimator works better in this period, and in
general, it performs better than the benchmark model. There are still cases in which
local estimator with optimal tuning parameter selection works better, particularly when
unemployment rate is used as the predictor. However, they are generally outperformed
by the AR(4) model, except when term spreads are used as the predictor. For Canada,
K5 (u) with optimal tuning parameter selection still improves forecast accuracy when
predictors are from the category of asset prices and price indices. The best results are
obtained when unemployment rate is used as the predictor, indicating that backward
looking Phillips curve forecasting model still works relatively well.

5.2. Forecasting growth and inflation shocks

Let y;,; be the macroeconomic shock whose conditional quantile we wish to forecast
based on systemic risk measures. The tth conditional quantile of y,,; is affine function
of observable x;:

(20) QT(yt+1|xt) = o + Brxt,

where x; is a systematic risk measure. Qc(y;41|x¢) :=inf {y : F(y|xt) > 1}, F(:|x) is the
conditional c.d.f. of Y4 given X; = x;, with density f(-|x;). As in Koenker and Bassett
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(1978), quantile regression estimator 01 = (r, Br)’ minimizes the sample analog of the
check loss based on the empirical distribution, namely,

(1) r(6;7) = ZQT

where (7 (0) = e41(0)[T - L¢,..0)<0] and €441(0) = y;41 — %t - Brxz. The objective function
for the local estimator in (3) and local linear estimator in (11) can be similarly defined.

As the check loss is not differentiable, expansion like (5) cannot be directly used. We
follow Fernandes, Guerre, and Horta (2021) to apply kernel smoothing to the empirical
objective function’ in (21), yielding

T
(22) En(6;0 = 2 S TFO)
t=2

where (7(0) = ({7(0)*K}. ) (e441(0)) = [ €% (v; B)K; (v-e4+1(6))dv and * is the convolution
operator. Kj,(-) is another weighting function with a tuning parameter b* > 0. It can be
shown that the second order derivative of (22) with respect to 0 is

T

~ 1 «
(23) LPO;0) = 3 Y XeX{Kj. (e (6),
=2

where X; = [1 x¢]’. The local version of (23) can be defined accordingly, which will be

2
used to approximate the weighting matrix Et ( afaTgé(&)) defined in (18), which leads to

feasible regret loss:

R(K, b) = B p, 7~ 01 L (0;7) Ok .7 - 6.

What remains is to choose K* and b*. We use an exponential-type weighting function
K*(u) = \—Ee 2 and set b* = {(2 + log T)/T}*/5 (He et al. (2021)).

We consider both growth and inflation shocks for the United States. As in Giglio,
Kelly, and Pruitt (2016), growth shocks are measured as the residuals from an AR(p)
regression based on the percentage changes of industrial production (IP) index. Inflation
shocks are obtained similarly as the residuals from an AR(p) regression based on the

’We use the kernel smoothing objective function to obtain the implementable regret loss in this
application. Estimation is still based on the empirical distribution asin (21), as we find that it is numerically
more stable and delivers better forecasting performance.
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percentage changes of consumer price index (CPI). Both IP and CPI data are taken from
FRED. The systematic risk measures we consider include CatFin (Allen, Bali, and Tang
(2012)), default spread, TED spread, term spread, slope factor of the yield curve, VIX
and stock return. The details of variable descriptions and data sources are provided in
Table E3. Due to the availability of CatFin, our sample period starts in 1973M1 and ends
in 2022M12. The initial estimation sample runs from 1973M1 to 1989M12 and the first
available forecast is for 19990M1.

Asin Giglio, Kelly, and Pruitt (2016), the macroeconomic shock series are constructed
carefully to preserve the out-of-sample nature. This means that the forecast of a macroe-
conomic shock at time T + 1 is constructed using only information from the estimation
sample up to time T. We fit IP growth and inflation series using an AR(13) model and
estimate it using Bayesian methods with natural conjugate prior. The forecast residual
at time T + 1 is constructed based on these estimates. The benchmark forecasts are
based on the historical unconditional quantile. We consider the left tails (5th, 10th and
15th percentiles) for IP growth shock and both left tails (5th, 10th and 15th percentiles)
and right tails (85th, 90th and 95th percentiles) for inflation shocks.

Table 5 reports the results for IP growth shocks forecasts. The only systemic risk
measure achieves gains across all three percentiles and weighting functions are TED
spread. Using local estimator provides additional benefits. K, (u) delivers best results for
5th and 10th percentiles but K;(u) performs better in the 15th percentile. Most systemic
risk measures improve forecast accuracy at the 5th percentile and generally performs
better than the local estimator, but gains from measures such as term spread and slope
factor get lost at the 10th and 15th percentiles. Default spread with non-local estimator is
the best at 15th percentile, but performance from K; (1) with tuning parameter selection
is quite close.

Table 6 reports the results for inflation shocks forecasts. Let us start by commenting
results from the left tail. First, except for term spread at 5th percentile, all systemic
risk measures with tuning parameter selection deliver benefits in all cases. Second,
TED spread with fixed rolling window forecasts is the best at 5th percentile, but stock
return with Ky(u) is the best at both 10th and 15th percentiles. Third, TED spread is
very useful as it always improves forecast accuracy no matter what types of weighing
function is used. Moving to the right tail, we see that Ky (u) is still useful at both 5th and
10th percentile as it is generally beneficial for all systemic risk measures. TED spread is
again very helpful at these two percentiles and local estimator performs better than the
non-local ones. Results are slight different at the 15th percentile, but local estimator
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still provides gains if Catfin or Term spread is used.

5.3. Forecasting house prices changes

Let y; = 1001n (P¢/P;_;) be the growth rate of real house prices (P;). Following Ghysels
et al. (2013), our baseline specifications involve predictability based on both serial
correlation (using lag) and valuation ratio (using price-to-rent ratio):

(24) Vi1 = X+ Byt e,
(25) Y1 = o+ Bhps + €41,

where hp; = In(H;) - In(P;), Ht is the net of all operating expenses of a property and P;
denotes its current price.

Since there is ample evidence that economic variables are associated with future
house prices variations (Campbell et al. (2009)), we would like to know which vari-
able would be useful to improve forecast accuracy, which lead to the following model

specification:
(26) Yer1 =t Byt vXe t e,
(27) Vie1 = &+ Bhpy+yXe + €44

Finally, as economic variables are often available at a higher frequency than y, and
hp;, we also consider the following mixed data sampling (MIDAS) regression model

specification:
(28) Yerp = ot Bryst BoB(LY™; 5)x§m) + €41,
(29) Y1 = ot Prhp + BZB(LI/mE 5)x§m) t E4+1,

where B(LY™;8) = Zle b(k; §)Lk-D/m Ls/mxgm) = xg'?/m and B(1;6) = Zle b(k; 8) = 1.
Here t indexes the basic time unit (quarters, in our case), m is the higher sampling
frequency (m = 3 when x is monthly and y is quarterly), and, as shown, LY™ operates at
this higher frequency. As explained in Andreou, Ghysels, and Kourtellos (2010), when
X; is available at a higher frequency, using higher frequency data directly may be more
efficient. Thus, it is of great interests to examine whether MIDAS specification helps to
improve forecasting performance.

The data for P; and hp; are taken from the International Housing Observatory
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Database. This is a publicly available database which covers a number of countries. The
detailed source of description and methodology can be found in Mack, Martinez-Garcia
et al. (2011). Due to the data availability of h p;, the countries we consider include 4
of the G7 countries (United States, Canada, France and Germany) as well as Australia.
Economic variables we consider include stock return, treasury-bill rate, term spread
(measured by the difference between long term, government bond yield and treasury-
bill rate), inflation (measured by changes of CPI) and growth (measured by changes of
industrial production), which are the ones considered in Ghysels et al. (2013)8. Table E4
provides data sources, detailed descriptions and data transformations for the predictors.
Our sample starts from 1975Q3 and ends at 2022Q4 (1975M7 - 2022M12 for monthly
predictors). The initial estimation sample runs from 1975Q3 to 1995Q4 and the first
available forecast is for 1996Q1.

Model parameters in specifications (24)-(25) and (26)-(27) can be estimated by LS
method. For the MIDAS specification (28)-(29), since y; and h p; are available at quarterly
frequency and economic variable is sampled at monthly frequency, we have m = 3. For
the parametrization of b(k; 5). We use Beta polynomials, which is based on the Beta
probability density function which involves two parameters & = (51, §,)':

f(£;81,89)

b(k) 61) 62) = )
YK F(E;581,82)

51-1(1_)52-1 e 5 :
where f(x; 81, 87) = £ (#{g)l)ﬁ(éz)(éﬁéﬂ and I'(d)) = ;" ¢ *xd1-14x. Following Ghysels

and Qian (2019), we set &; = 1 and restrict 6, to be larger than 1 to ensure a downward

sloping weighting scheme. Then, the model parameters are estimated by nonlinear LS
method as in Andreou, Ghysels, and Kourtellos (2010). Finally, for the number of high
frequency lags, we set K = 3.

Table 7 reports the overall forecasting performance based on the specification with
lag ((24), (26) and (28)). Table 8 reports the overall forecasting performance based on the
specification with valuation ratio ((25), (27) and (29)). The upper panel in each country
presents the results obtained from (26) and the bottom panel is for the results obtained
from MIDAS specification (28).

Let us start by commenting the results obtained from Table 7. There are several
findings. First, all the alternatives are outperformed by the benchmark in the United

8Since monthly CPI and INDPRO are not available in Australia, these two variables are not investigated
with specification (28)-(29).
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States, indicating that the specification with lag is a tough benchmark. This is also true
for France, as there are only two cases in which alternatives perform better. Second,
for Canada, fixed rolling window forecast with specification (26) and treasury bill as a
predictor has the overall best performance. Finally, we see that local estimator with
optimal tuning parameter selection is useful for Germany and Australia. For Germany,
using specification (26) with local estimator (either K;(u) and K3(u)) always improves
compared to the benchmark. K, (u) is a better choice for Australia as it always delivers
gains. Overall, the forecasting performance based on the specification with lag is rather
heterogenous across countries.

Moving to the results in Table 8, some different stories are evident. First, there are
more entries that the numbers are below 1, indicating that local estimators are more
likely to perform better than the non-local benchmark. Second, for all countries, using
MIDAS specification with treasury bill rate always improves forecast accuracy, and in
general not using all data (K;(u) and K3(u)) are better (except Germany). K;(u) also in
general deliver gains compared to the benchmark, but Canada is an exception, except
for the case when treasury bill rate is used as the predictor. Finally, K3(u) is always the
best for United States and France. Overall, the parameter instability is more pervasive
in the specification with valuation ratio, and using MIDAS specification with treasury
bill rate as an additional predictor is preferred.

To provide a better understanding of the source of the gains, we plot the cumulative
sums of MSFEs differences (relative to the benchmark (24) or (25)) over the evaluation
sample. The results from (28)-(29) are in Figure 4 and the results from (26)-(27) are
plotted Figure 5. Based on the findings in Table 8, we only consider the case when
treasury bill rate is used as the predictor and K3(u) is used as the weighting function.
For all countries, the gains in the specification with valuation ratio are generally positive
over the evaluation sample. For Germany, the gains markedly increase afterwards for
the specification with valuation ratio. The gains in the specification with lag are also
present in United States and Canada (with MIDAS) before 2008, but the predictability
gets lost afterwards. Finally, patterns from (26)-(27) are roughly similar. For Canada,
the gains with lag specification are less evident (compared to MIDAS) in the initial
evaluation sample, and the overall better performance is mostly from the COVID period
(after 2019).
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5.4. Bond return predictability

As in Cochrane and Piazzesi (2005), we use the following notation for the (log) yield of

an n-year bond:

1
P = - 7,

where pgn) is the log price of the n-year zero-coupon bond at time t. The holding-period

return of buying an n-year bond at time t and selling it as an (n - 1)-year bond at time

t+121is

-1
rf‘fiz = pz(qu) - Pgn)'

The excess return is

(n) (n) (1)

X112 = Te12 = Vi s

where yl(fl) is the one-year risk-free rate.

We consider three different specifications to assess whether the excess bond returns

(n)

X112

are predictable:
(i) Fama-Bliss (FB) univariate

(n) _ (n) .
Xt = @+ stt t €4412;

(i) Cochrane-Piazzesi (CP) univariate

(n) _ .
X419 = &t BCPt + €4412;

(iii) Fama-Bliss and Cochrane-Piazzesi predictors

rxfﬂz =+ Blfsgn) + B9CPt + €441

The Fama-Bliss (FB) forward spreads are given by

ngn) _ fgn) _ J’gl) _ pgn—l) _ pgn) _ J/gl)-

The Cochrane-Piazzesi (CP) factor is constructed as the linear combination of forward

rates:
CP; = ?/ft)
(1) £(2)

where f; = (y;7, fi7, gs),f§4),f§5))’. The coefficient vector v is estimated from a
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predictive regression of % )2751:2 rxgzz on [1 f}]'.

We study excess bond return predictability in four bond markets: United States,
Canada, United Kingdom and Japan, which are among the largest bond markets in the
world. The yield data for United States are taken from Liu and Wu (2021). The yield data
for Canada and UK are obtained from Bank of Canada and Bank of England, respectively.
The yield data for Japan are collected from Ministry of Finance Japan. Since the holding
period we consider is up to 5 years, all yield data are collected up to 5 years maturity.
Due to data availability in different countries, our sample period runs from 1986M1 to
2022M12. A more detailed description of the data is provided in Table E5. The initial
estimation sample runs from 1986M1 to 1999M12 and the first available forecast is for
2000M1. The benchmark forecasts are obtained from the three principal components
(PC) of the global yield curve (by stacking all yield data together from four markets).

Tables 9-11 report the forecasting results for all four bond markets. In each market,
we consider four different maturities: 2 years, 3 years, 4 years and 5 years. The entries
for benchmark PCs of yield curve forecasts are the RMSFEs in levels and all other entries
are ratios of RMSFEs relative to the benchmark. Overall, the results are very promising,
particularly when K3(u) is used with optimal tuning parameter selection, as it provides
sizable and sometimes significant improvement over the benchmark forecasts in all
cases. For Japan, K5 (u) leads to better forecasting performance in some cases, but the
results are very close to the ones obtained from K3(u). Forecasts from all local estimators
provide gains for Canada, but choice of weighting functions generally matters for other
bond markets. Finally, standard predictive regression by using non-local least square
estimator deteriorates forecasting performance for some markets, particularly for
Canada. This again shows that parameter instability matters and ignoring it may lead
to forecast failure.

6. Conclusion

Parameter instability is pervasive in forecasting models, and local estimator is often
used in the presence of parameter instability. In this paper, we first provide conditions
on the parameter instability to achieve consistency of the local estimator. It is shown
that local estimator can handle a broad range of parameter instability considered in
the literature, which includes local structural break, smooth structural change and
realization of persistent and bounded stochastic process. The consistency rate depends
on the amount of local variation and we obtain faster rate when these variations are
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small.

We then move on to the analysis of OOS forecasting. We focus on the end-of-sample
risk and show that under certain conditions, minimizing the end-of-sample risk is equiv-
alent to minimize the regret risk, which depends on the choices of tuning parameter
and weighting function. We propose method to select tuning parameter by directly min-
imizing the regret risk. This is similar to Inoue, Jin, and Rossi (2017), but we show that
asymptotic optimality holds when a generic weighting function is used for estimation
and a general loss function is used for forecast evaluation. We also provide analyses
on the choice of weighting function, which has been less addressed in the literature.
Our analyses are based on the limiting behavior of the regret risk, which reflects the
usual bias-variance trade-off. When the estimation variance dominates, the criteria
to select the weighting function is quite simple. When estimation bias dominates, the
criteria is more involved as it depends on the property of parameter time variation.
However, it still provides guidance on the implementation of our tuning parameter
selection procedure.

Our theoretical analyses are evaluated through an extensive Monte Carlo study with
linear predictive regression model. We find that local estimation performs well under
various form of parameter instability. Our tuning parameter selection procedure is also
useful in forecasting. In general, using all data and downweighting them is preferred.

We present four empirical applications. Our methods are quite useful and they
generally improves forecast accuracy. Weighting functions do matter in the forecasting
performance. While we find using all data and downweighting them is preferred in the
application of forecasting inflation and growth (inflation) shocks, using only recent data
and downweighting them is more useful in forecasting bond returns and real house
price changes.
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FIGURE 1. Shape of the weighting function with T = 500, b = ¢T-1/3 with ¢ equal to 1,2.5 and 5.
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FIGURE 3. Cumulative sums (taken over time) of MSFEs differences ((MSFEs from UCSV benchmark minus MSFEs from
ARDL(1,1)) for inflation forecasts when changes of CPI is used as the predictor. The left panels shows the results obtained for U.S.
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TABLE 1. Small sample properties of the local estimator: Average MADs

DGP OptR Opt-G OptE | Opt-R Opt-G Opt-E | Opt-R Opt-G Opt-E | Opt-R Opt-G Opt-E
a
T =100 T =200 T =300 T =400
One-time structural break
2 0.079 0.049  0.077 0.052 0.034  0.046 | 0.030 0.027  0.034 | 0.026 0.022  0.029
3 0.090 0.106 0.089 | 0.064 0.049  0.060 0.051 0.038  0.048 0.041 0.031  0.040
4 0.101 0.259 0.090 0.063 0.199 0.058 0.050 0.161 0.046 0.044 0.134 0.040
Smooth structural change
5 0.052 0.045 0.051 0.040 0.036 0.038 0.033 0.031 0.033 0.030 0.028 0.029
6 0.066 0.076 0.060 | 0.052  0.062 0.047 | 0.044  0.054 0.039 | 0.040  0.049 0.036
7 0.021 0.014 0.023 0.015 0.010 0.016 0.012 0.009 0.013 0.011 0.008 0.012
8 0.279 0.261 0.280 0.251 0.240 0.249 0.238 0.227 0.235 0.223 0.217 0.221
9 0.248 0.234 0.245 0.213 0.209 0.207 0.198 0.193 0.192 0.185 0.184 0.177
10 0.206 0.193 0.202 0.168 0.163 0.163 0.153 0.152 0.146 0.141 0.141 0.134
11 0.165 0.151  0.166 0.128 0125 0125 0.114 0.111 0.110 | 0.103 0.103 0.100
12 0.139 0.129 0.141 0.107 0.101 0.106 0.087 0.088 0.086 0.076 0.077 0.075
b
T =100 T =200 T =300 T =400
One-time structural break
2 0.186 0.127 0.186 0.134 0.093 0.126 0.093 0.077 0.103 0.081 0.065 0.089
3 0.204  0.214  0.204 0.157 0.119  0.151 0.131 0.100  0.126 0.111 0.085  0.109
4 0.229 0.424 0.209 | 0.156 0.372 0.149 | 0.129 0.323 0.122 | 0.115 0.275 0.109
Smooth structural change
5 0.170 0.137 0.175 0.133 0.109 0.135 0.112 0.095 0.115 0.101 0.086 0.103
6 0.199 0.197 0.193 0.159 0.161 0.151 0.134 0.140 0.127 0.123 0.128 0.117
7 0.151 0.128  0.150 0.109 0.088  0.106 0.090 0.074  0.088 0.078 0.064  0.076
8 0.092 0.066 0.103 0.068 0.050 0.075 0.058 0.042 0.064 0.050 0.037 0.055
9 0.093 0.067 0.104 0.068 0.049 0.075 0.056 0.041 0.063 0.051 0.037 0.056
10 0.095 0.067 0.106 0.068 0.050 0.076 0.056 0.041 0.063 0.050 0.036 0.055
11 0.096  0.067 0.106 0.069 0.050  0.078 0.059 0.042  0.065 0.051 0.037 0.057
12 0.096 0.068  0.107 0.071 0.052  0.078 0.060 0.046  0.066 0.057 0.043  0.061

Notes: R = 40: rolling window forecast with window size equal to 40; Opt-R: optimal selection with K; (u); Opt-G: optimal selection
with K»(w); Opt-E: optimal selection with K3 (u). We set b = ¢T~/® with ¢ ranging from 1 to 5 (width 0.05). The tuning parameter used

to compute O7 is set to b = 1.06T-1/5,
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TABLE 2. Forecasting performance from simulated dataset

DGP R=40 OptR Opt-G Opt-E ‘ R=40 OptR Opt-G Opt-E ‘ R=40 OptR Opt-G Opt-E ‘ R=40 Opt-R Opt-G OptE
T =100 T =200 T =300 T =400
Constant coefficient
1 1.020 1.056 1.019 1.070 ‘ 1.027 1.035 1.015 1.039 ‘ 1.033 1.026 1.014 1.032 ‘ 1.030 1.022 1.009 1.025
One-time structural break
2 0.757 0.791 0.756 0.790 0.775 0.783 0.763 0.784 0.765 0.762 0.751 0.767 0.782 0.776 0.767 0.778
3 0.648 0.685 0.685 0.690 0.671 0.685 0.666 0.687 0.670 0.675 0.661 0.678 0.666 0.664 0.653 0.666
4 0.864 0.636 0.824 0.627 0.605 0.608 0.765 0.610 0.615 0.611 0.737 0.613 0.642 0.634 0.709 0.636
Smooth structural change
5 0.931 0.950 0.928 0.956 0.922 0.927 0.913 0.930 0921 0.920 0.907 0.923 0918 0914 0.904 0916
6 0.821 0.808 0.812 0.814 0.780 0.780 0.784 0.783 0.763 0.760 0.765 0.761 0.764 0.757 0.760 0.760
7 0.842 0.863 0.835 0.865 0.852 0.862 0.836 0.862 0.834 0.829 0.818 0.834 0.843 0.836 0.825 0.838
8 1.006 1.028 1.003 1.034 1.002 1.004 0.991 1.004 1.012 1.007 0.997 1.013 1.001 0.997 0.992 0.997
9 0.988 0.994 0.981 1.001 0.979 0.980 0.970 0.981 0.976 0.976 0.970 0.977 0.973 0.971 0.967 0.971
10 0.966 0971 0956 0972 0.949 0.953 0946 0952 0.949 0.948 0942 0949 0.952 0.948 0944 0948
11 0.959 0.975 0.952 0.980 0.945 0.951 0.937 0.955 0.919 0919 0911 0.920 0912 0.907 0.905 0.908
12 0.901 0.915 0.896 0.923 0.881 0.885 0.876 0.887 0.875 0.873 0.869 0.875 0.853 0.847 0.844  0.849

Notes: R = 40: rolling window forecast with window size equal to 40; Opt-R: optimal selection with K (u); Opt-G: optimal selection
with K, (u); Opt-E: optimal selection with K3(u). We set b = cT™/3 with ¢ ranging from 1to 5 (width 0.05). The tuning parameter used
to compute 07 is set to b = 1.06TY/>,
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TABLE 3. Forecasting performance for inflation in the United States: 1985Q1-2019Q4

UCSsV 0.571
AR(4) 1.048

Non-local R=40 Opt-R Opt-G Opt-E

Asset prices
FEDFUNDS 1.047 0.992 1.087 1.008 1.109
TB3MS 1.050 0.988 1.089 1.007 1.106
GS10 1.076 1.018 1.103 1.041 1.112
GS10TB3Mx 1.085 1.014 1.062 1.038 1.090
term spread 1.082 1.002 1.070 1.023 1.092
S&P 500 1.097* 1.020 0.994 0.984 1.016
VXOCLSx 1.039 1.033 1.016 0.972 0.964

Real economic activity

DPIC96 1.011 0.990 0.987 0966  1.009
GPDIC1 1.043 1.012 1.006 0.981 1.032
INDPRO 0.973 0.996 0.991 0.971 1.012
CE160V 0.925 0.983 0.971 0914 0949
UNRATE 1.101 1.166 1.097 1.065 1.108
LNS14000026 1.114* 1.185 1.104 1.069 1.096
HOUST 1.076 1.038 1.049 1.008 1.063
PERMIT 1.057 1.020 1.028 0990  1.037

Price indices

CPIAUCSL 1.194* 1.155 1.156 1.117 1.263
CPIAPPSL 1.237* 1.038 1.027 1.007 1.062
CPIENGSL 1.154* 1.102 1.108 1.068 1.184
PPIACO 1.296* 1.047 1.014 1.023 1.087
PCECTPI 1.183 1.157 1.131 1.064 1.273
Monetary measures
BOGMBASEREALx 1.209 0.998 1.041 0.993 1.235
MIREAL 1.064 0.995 1.016 1.000 1.051
M2REAL 1.091 1.025 1.031 0.999 1.086

Notes: The description of predictors is detailed in Table E1. R = 40: rolling window with fixed window size; Opt-R: optimal
selection with Kj (u); Opt-G: optimal selection with K, (u); Opt-E: optimal selection with K3(1). We set b = ¢T3 with ¢ ranging from
1to 5 (width 0.05). The tuning parameter used to compute 07 is set to b = 1.06T"/>, The row "UCSV" presents the exact RMSFEs of
the forecasts from the UCSV model. The row "AR(4)" presents the ratio of the RMSFEs of the forecasts from an AR(4) model relative
to the benchmark. In other columns, the numbers are also the ratios of the RMSFEs relative to the benchmark. To provide a rough
gauge of whether the two forecasts have significantly different accuracy, we use a Diebold-Mariano t-statistic with fixed smoothing
asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different from zero (using either fixed
b-smoothing or fixed m-smoothing asymptotics) are denoted by an asterisk, corresponding to the 5 percent significance level.
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TABLE 4. Forecasting performance for inflation in Canada: 1985Q1-2019Q4

ucsv 8.474
AR(4) 1.107

Non-local R=40 Opt-R Opt-G Opt-E

Asset prices
BANK_RATE_L 1.116 0.953 0.968 0.915 1.011
TBILL_3M 1.118 0.955 0.983 0.914 1.023
GOV_AVG_10pY 1.112 0.970 1.026 0.941 1.003
G_AVG_5.10.Bank_rate 1.123 0.960 0.971 0.935 0.988
G_AVG_10p.TBILL_3M 1.118 0.964 0.960 0.929 0.995
TSX_CLO 1.096 0.897 0.929 0.883 0.949

Real economic activity

REAL_GDP 1.116 0.983 1.000 0.932 1.016
hhold_dispo_income 1.104 0.956 0.970 0935  0.985
REAL_I 1.112 1.037 1.077 0.964 1.247
CANPROINDQISMEIL 1.130 0.993 0.982 0.931 1.008
LFEMTTTTCAQ647S 1.109 1.031 1.006 0.946  1.062
UNEMP_CAN 1.110 0.985 1.019 0.942  1.002
hstart_CAN 1.109 0.945 0.972 0.929 0.991

Price indices

CPI_ALL_CAN 1.113 0.916 0.908 0.899  0.946
IPPI_CAN 1.194 0.887 0.925 0.885 0.958
C_PRICE 1.099 0.906 0.962 0.905 0971
Monetary measures
MBASE1 1.103 0.944 0.958 0.919 1.027
CRED_BUS_cb 1.124 0.997 1.008 0.966 1.040
CRED_HOUS_cb 1.096 0.982 0.973 0.926 0.977

Notes: The description of predictors is detailed in Table E2. See Table 3 for other details on the implementation.
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TABLE 5. Quantile IP growth shock forecasts

Non-local R=60 Opt-R Opt-G Opt-E Non-local R=60 Opt-R Opt-G Opt-E
5th percentile 10th percentile
UQ 0.122 UQ 0.161
CatFin 0.973 1.042 0.975 0.980 0.986 CatfFin 1.003 1.028 1.023 1.003 0.988
Default spread 0.942 0.964 0.992 0.969 0.979 Default spread 0.959 1.005 0.990 0.973 0.980
TED spread 0.948 0.990 0.952 0.916* 0.950 TED spread 0.981 0.994 0.973 0.955 0.980
Term spread 0.978 1.061 1.004 1.002 1.022 Term spread 1.005 1.056 1.042 1.014 1.021
Slope factor 0.990 1.082 1.020 1.015 1.014 Slope factor 1.001 1.062 1.049 1.016 1.035
VIX 0.986 1.019 0.940 0.938 0.912 VIX 1.006 1.021 0.998 1.003 1.071
Stock return 1.010 1.083 1.017 0.994 1.010 Stock return 1.000 1.051 1.037 1.001 1.030
15th percentile
UQ 0.186
CatFin 0.998 1.056 1.010 1.008 1.023
Default spread 0.972 0.979 1.008 0.998 1.005
TED spread 0.987 0.993 0.977 0.996 1.019
Term spread 1.010 1.034 1.033 1.018 1.034
Slope factor 1.005 1.042 1.042 1.014  1.034
VIX 1.003 1.149* 1.061* 1.004 1.101*
Stock return 1.003 1.054* 1.024 1.014 1.038

Notes: See Table E3 for the definition of the predictors. "UQ": historical unconditional quantile forecasts; R = 60: rolling window
with fixed window size; Opt-R: optimal selection with K; (u); Opt-G: optimal selection with K»(u); Opt-E: optimal selection with
K3(1). We set b = ¢T3 with ¢ ranging from 1 to 7 (width 0.1). The tuning parameter used to compute 07 is set to b=1.06TY5. For
each specification, the benchmark results (from unconditional historical quantile) are check losses in level and the other entries
present the ratios of check losses relative to the benchmark. Cyan shading indicates the best performing specification within each
variable. Gray shading indicates the overall best performing case. To provide a rough gauge of whether the two forecasts have
significantly different accuracy, we use a Diebold-Mariano t-statistic with fixed smoothing asymptotics as in Coroneo and Iacone
(2020). Differences in accuracy that are statistically different from zero (using either fixed b-smoothing or fixed m-smoothing

asymptotics) are denoted by an asterisk, corresponding to the 5 percent significance level.
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TABLE 6. Quantile inflation shock forecasts

Non-local R=60 OptR Opt-G  Opt-E Non-local R=60 Opt-R Opt-G Opt-E
Sth percentile 10th percentile
uQ 0.039 uQ 0.058
CatFin 1.043 0.946 0.989 0.929 1.016 CatfFin 1.010 1.043 1.002 0.992 1.010
Default spread 1.053 0.839 0.893 0.851 0.992 Default spread 1.021 0.938 0.978 0.938 0.983
TED spread 1.027 0.834 0.954 0.848 0.910 TED spread 0.987 0.958 0.938*  0.924* 0.959
Term spread 1.016 1.035 0.989 1.011 1.067 Term spread 1.020 1.041 1.003 0.967 1.022
Slope factor 1.034* 1.033 1.016 0.989 0.987 Slope factor 1.019 1.036 1.007 0.960 1.039
VIX 0.996 1.301 1.062 0.975* 1.233 VIX 0.988 1.236* 1.014 0.948 1.057
Stock return 1.036 1.050 1.118 0.956 1.067 Stock return 1.011 0.943 0.928 0.922 0.945
15th percentile
uQ 0.070
CatFin 1.000 1.025 0.993 0.980 1.022
Default spread 1.022 0.968 0.997 0.991 1.010
TED spread 0.981 0.963 0.949* 0.950* 0.961
Term spread 1.020 1.010 1.015 0.963* 1.025
Slope factor 1.022 1.004 0.999 0.963* 1.014
VIX 0.996 1.091 1.011 0.986 1.022
Stock return 1.010 0.948 0.957 0.921* 0.974
85th percentile 90th perentile
UQ 0.068 UQ 0.052
CatFin 1.007 0.976 0.934 0.961 0.956 CatfFin 1.007 1.011 0.959 0.948 0.975
Default spread 0.960 0.976 0.978 0.986 0.992 | Default spread 0.954 1.028 1.022 0.964 1.014
TED spread 0.941 0.937 0.925 0.934 0.916 TED spread 0.947 0.949 0.956 0937 0948
Term spread 0.937 0.936 0.937 0.934 0.935 Term spread 0.932 0.924 0.928 0.926 0.932
Slope factor 0.935 0.929 0.943 0.932 0.925 Slope factor 0.927 0.941 0.969 0.924 0.933
VIX 1.001 1.061 1.007 0.956 1.019 VIX 1.003 1.217* 1.050 1.001 1.083
Stock return 1.023* 0.931 0.941 0.949 0.936 Stock return 1.029* 0.989 0.986 0962  0.995
95th percentile
UQ 0.032
CatFin 0.992 1.096 0.978 0.993 1.019
Default spread 0.947 1.178 1171 1.000 1.145
TED spread 1.014 1.075 1.024 1.036 1.006
Term spread 0.977 1.031 1.046 1.049 0.962
Slope factor 0.965 1.040 1.014 1.033 1.031
VIX 0.980 1.341* 1.262* 1.123 1.082
Stock return 1.017 1.179 1.076 1.085 1.082

Notes: See Table 5 for the details on the predictors and the implementation.
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TABLE 7. Forecasting performance: specification with lag

Non-local R=40 Opt-R Opt-G Opt-E Non-local R=40 Opt-R Opt-G Opt-E
United States Canada
OLS 1.452 OLS 5.804
stock return 1.019 1.142 1.150 1.050 1.127 stock return 0.985 1.018 1.081 1.015 1.108
treasury bill 1.065 1.115 1.122 1.044 1.129 treasury bill 0.998 0.926 0.959 1.049 0.994
spread 1.014 1.105 1.140 1.030 1.116 spread 1.004 1.086 1.161 1.081 1.176
inflation 1.028 1.130 1.175 1.074 1.170 inflation 0.975 0.975 1.066 1.001 1.119*
growth 1.018 1.208 1.300 1.149 1.351 growth 1.041 1.079 1.158 1.085 1.194
MIDAS MIDAS
stock return 1.021 1.118 1.139 1.051 1.199 stock return 1.021 1.123 1.191 1.093 1.245*
treasury bill 1.055 1.133 1.148 1.046 1.131 treasury bill 1.006 0.994 1.027 1.071 1.070
spread 1.038 1.121 1.123 1.050 1.160 spread 1.000 1.068 1.149 1.075 1.174
inflation 1.026 1.158 1.163 1.126 1.182 inflation 0.965 1.062 1.165* 1.061 1.264
growth 1.023 1.133 1.092 1.038 1.078 growth 1.013 1.109 1.215* 1.105 1.211
France Germany
OLS 1.166 OLS 0.848
stock return 0.956 1.163 1.115 1.029 1.031 stock return 0.993 1.014 0.985 1.014 0.965
treasury bill 1.046 1.193 1.007 1.081 1.020 treasury bill 0.978 0.984 0.951 1.046 0.909
spread 1.005 1.240* 1.150 1.079 1.008 spread 0.978 1.004 0.988 1.079 0.982
inflation 1.012 1.272* 1.185 1.071 1.078 inflation 0.947 0.979 0.950 1.014 0.942
growth 1.012* 1.231* 1.165 1.090 1.064 growth 0.950 1.005 0.931 1.057 0.936
MIDAS MIDAS
stock return 1.037 1.227* 1.115 1.089 1.048 stock return 1.034 1.077 1.052 1.025 1.012
treasury bill 1.055 1.203 1134 1.076 1.078 | treasury bill 1.018 1.015 1.045  1.000  1.037
spread 1.001 1.251* 1.260 1.079* 1.078 spread 0.996 0.983 0.988 0.964 0.930
inflation 1.008 1.191* 1.032 1.058 0.956 inflation 0.998 1.076 1.072 0.991 1.093
growth 1.005 1.164 1.138 1.046 1.059 growth 0.982 0.948 0.945 0.943 0.898
Australia
OLS 2.573
stock return 1.006 0.897 0.918 0.871 0.960
treasury bill 0.992 1.045 0.990 0.965 1.005
spread 1.001 0.941 0916 0.952 0.929
inflation 1.007* 1.088 1.178 0.991 1.130
growth 0.988 1.021 1.040 0.978 1.057
MIDAS
stock return 1.023 1.126* 1.101 1.067 1.166*
treasury bill 1.005 1.064 1.100 1.002 1.179
spread 0.998 0.997 1.063 0.978 1.073

Notes: The description of predictors is detailed in Table E4. R = 40: rolling window with fixed window size; Opt-R: optimal
selection with K (u); Opt-G: optimal selection with K> (w); Opt-E: optimal selection with K3(u). We set b = T~/ with ¢ ranging from
1to 5 (width 0.05). The tuning parameter used to compute 7 is set to b=1.06T"Y5, For each specification, the entries present the
ratios of MSFEs relative to the non-local benchmark (without any economic variable). Cyan shading indicates the best performing
specification within each variable. Gray shading indicates the overall best performing case. To provide a rough gauge of whether
the two forecasts have significantly different accuracy, we use a Diebold-Mariano t-statistic with fixed smoothing asymptotics as in
Coroneo and Iacone (2020). Differences in accuracy that are statistically different from zero (using either fixed b-smoothing or
fixed m-smoothing asymptotics) are denoted by an asterisk, corresponding to the 5 percent significance level.
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TABLE 8. Forecasting performance: specification with valuation ratio

Non-local R=40 Opt-R Opt-G Opt-E Non-local R=40 Opt-R Opt-G Opt-E
United States Canada
OLS 2.246 OLS 7.954
stock return 1.018 1.145 1.267 1.014 1.007 stock return 0.916 1.015 1.010 0.919 1.015
treasury bill 1.028 1.028 1.162 1.002 0.876 | treasury bill 0.968 0.822 0.835 0.865 0.802
spread 1.037 1.070 1.023 1.007 0.883 spread 1.045 1.144 1.089 1.042 1.082
inflation 1.079 1.141 1.196 0.994 0.917 inflation 1.002 1.113 1.077 1.041 1.104
growth 1.004 1.227* 1.375 1.039 1.071 growth 1.063 1.136 1.121 1.031 1.141
MIDAS MIDAS
stock return 1.014 1.109 0.970 0.992 0.859 | stock return 0.992 1.145 1.018 0.989 1.030
treasury bill 1.014 1.096 0.956 0.967 0.825 | treasury bill 0.935 0.842 0.792 0.912 0.799
spread 1.059 1.292 0.959 1.034 0.898 spread 1.000 1.150 1.020 0996  1.046
inflation 1.004 1.109 0.953 0.926 0.825 inflation 1.017 1.133 1.078 1.058 1.102
growth 1.011 1.206 0.976 1.005 0.887 growth 1.012 1.152 1.004 0.998 1.006
France Germany
OLS 2.202 1.600
stock return 0.993 1.061 0.809 0.865 0.659 | stock return 1.003 0.863 0.718 0.848 0.721
treasury bill 0.958 0.834  0.694  0.809 0.694 | treasury bill 0.894 0.673 0705  0.785 0.721
spread 0.997 1.045 0.818 0.838 0.721 spread 0.927 0.615 0.577 0.722 0.537
inflation 0.984 1.035 0.886 0.888 0.763 inflation 0.971 0.838 0.770 0.841 0.773
growth 1.031 1.007 0.793 0.899 0.666 growth 1.002 0.906 0.855 0.919 0.877
MIDAS MIDAS
stock return 1.011 1.108 0.827 0.902 0.745 | stock return 1.033 0.939 0.898 0.958 0.824
treasury bill 0.962 0.958 0.737 0.802 0.658 | treasury bill 0.912 0.763 0.832 0.816 0.828
spread 0.992 1.131 0.777 0.924 0.638 spread 0.936 0.651 0.633 0.753 0.554
inflation 1.016 1.075 0.781 0.928 0.705 inflation 1.012* 0.925 0.821 0.904 0.794
growth 1.025 1.069 0.804 0.883 0.731 growth 0.982 0.901 0.827 0.918 0.794
Australia
OLS 4.802
stock return 0.986 0.958 0.918 0.926 0.949
treasury bill 0.945* 0.948 0.932 0.889 0.970
spread 0.998 0.964 0.847 1.022 0.866
inflation 0.993 1.122 1.055 1.063 1.147
growth 1.006* 1.103 1.066 1.065 1.099
MIDAS
stock return 1.005 1.078 0.915 0.976 0.948
treasury bill 0.982 1.068 0911 0.985 0.901
spread 1.002 1.115 0.979 1.005 1.007

Notes: See Table 7 for the details on the definition of predictors and the implementation.
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TABLE 9. Out-of-sample forecasting performance on bond returns: United States

Non-local R=60 Opt-R Opt-G OptE Non-local R=60 Opt-R Opt-G  Opt-E
USA - 2 years USA - 3 years
PC-yields 1.592 PC-yields 6.046
FB 1.047 1.150 1.103 0.958 0.852 FB 0.979 1.038 0967 0922 0.743
CP 1.113 1.122 0.949 1.005 0.744 CP 1.106 1.075 0.899 0.965 0.705
FB+CP 1.107 0.964 0.876 0.919 0.652 FB+CP 1.116 0.903 0.780 0.882 0.578*
USA - 4 years USA - 5 years
PC-yields 11.836 PC-yields 18.670
FB 0.960 0.943 0.884  0.905 0.709 FB 0.941 0.872 0.875 0.900 0.707
CP 1.101 1.037 0.863 0.943 0.708* CP 1.099 1.025 0.862 0.941 0.738*
FB+CP 1.099 0.778 0.694 0.841 0.518* FB+CP 1.075 0.751 0.693 0.861 0.535*

Notes: See section 5.4 for the definition of the predictors FB and CP. R = 40: rolling window with fixed window size; Opt-R: optimal
selection with K;(u); Opt-G: optimal selection with K, (u); Opt-E: optimal selection with K3(u). We set b = ¢T~ 13 with ¢ ranging
from 1to 7 (width 0.1). The tuning parameter used to compute 07 is set to b = 1.06T-Y/5. For each specification, the benchmark
results (from PCs of the yields) are MSFEs in level and the other entries present the ratios of MSFEs relative to the benchmark. Cyan
shading indicates the best performing specification within each variable. Gray shading indicates the overall best performing case.
To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use a Diebold-Mariano t-statistic
with fixed smoothing asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different from zero
(using either fixed b-smoothing or fixed m-smoothing asymptotics) are denoted by an asterisk, corresponding to the 5 percent
significance level.

TABLE 10. out-of-sample forecasting performance on bond returns: Canada

Non-local R=60 Opt-R Opt-G Opt-E Non-local R=60 Opt-R Opt-G Opt-E
Canada - 2 years Canada - 3 years
PC-yields 1171 PC-yields 3.534
FB 1.011 0.920 0.953 0.826 0.726 FB 1.029 0.868 0.905 0.859 0.706
CP 1.051 0.888 0.908 0.809 0.744 CP 1.094 0.907 0.898 0.852 0.757
FB+CP 1.034 0.861 0.931 0.798 0.687 FB+CP 1.096 0.813 0.852 0.826 0.642
Canada - 4 years Canada - 5 years
PC-yields 6.545 PC-yields 10.133
FB 1.033 0.860 0.887 0.892 0.707 FB 1.032 0.873 0.899 0.929 0.730
CP 1.129 0911 0.859 0.882 0.758 CP 1.165 0.931 0.864 0914 0.781
FB+CP 1.137 0.822 0.847 0.861 0.661 FB+CP 1.149 0.843 0.867 0.895 0.682

Notes: See Table 9 for the details on the definition of predictors and the implementation.
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TABLE 11. oOut-of-sample forecasting performance on bond returns: UK

Non-local R=60 Opt-R Opt-G OptE Non-local R=60 Opt-R Opt-G Opt-E
UK - 2 years UK - 3 years
PC-yields 1415 PC-yields 4.378
FB 0.807 0.821 0.907 0.790 0.648 FB 0.897 0.897 1.057 0.866 0.769
CP 0.923 0.764 0.704 0.646 0.593 CPp 1.041 0.839 0.769 0.729 0.650
FB+CP 0.921 0.688 0.669 0.645 0.514 FB+CP 1.050 0.751 0.745 0.724 0.591
UK - 4 years UK - 5 years
PC-yields 8.224 PC-yields 12.962
FB 0.949 0.942 1.042 0.897 0.884 FB 0.980 0.983 1.028 0.923 0.936
CP 1.087 0.884 0.811 0.782 0.691* CP 1.097 0916 0.850 0.813 0.727
FB+CP 1.092 0.797 0.780 0.770 0.638 FB+CP 1.075 0.835 0.811 0.789 0.669
Notes: See Table 9 for the details on the definition of predictors and the implementation.
TABLE 12. out-of-sample forecasting performance on bond returns: Japan
Non-local R=60 Opt-R  Opt-G Opt-E Non-local R=60 OptR Opt-G  Opt-E
Japan - 2 years Japan - 3 years
PC-yields 0.333 PC-yields 1.146
FB 0.222 0.105*  0.115* 0.099* 0.097* FB 0.244 0.148* 0.167* 0.145* 0.150*
CP 0.582 0.102* 0.112* 0.093* 0.098* CP 0.677 0.155* 0.164* 0.140* 0.144*
FB+CP 0.610 0.101* 0.134* 0.091* 0.094* FB+CP 0.679 0.149* 0.179* 0.140*  0.141*
Japan - 4 years Japan - 5 years
PC-yields 2.517 PC-yields 4.050
FB 0.246 0.197*  0.186* 0.186* 0.165* FB 0.291 0.267*  0.243* 0.247*  0.219*
CP 0.817 0.181* 0.182* 0.162* 0.160* CP 0.902 0.220*  0.223* 0.196* 0.190*
FB+CP 0.772 0.186*  0.189* 0.162* 0.168* FB+CP 0.871 0.182* 0.187* 0.167* 0.169*

Notes: See Table 9 for the details on the definition of predictors and the implementation.
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Appendix A. The model

We consider time series models of the following form

(A1) Yi+h,T = G(yt)T, Xer, e550:7), Op7=0(4T), t=1,2,--,T,

where G(y, x, ¢; 0) is a known function, X; T contains exogenous predictors and ¢ is a
sequence of errors and h is the forecast horizon which is assumed to be finite. Collect
Zt, 7= (Vern, T Vi, T X; 7). Then, given the specification of G and the property of ¢, we
can obtain the corresi)onding loss: € 7(8(t/T)) = U(Zs,; 6(t/T)).

Under certain regularity conditions on G and ¢, it can be shown that ((see Dahlhaus,
Richter, and Wu (2019), Karmakar, Richter, and Wu (2022) and Kristensen and Lee (2023)
for details)), for each u € [0, 1], the stationary solution to the model (A1) exists and takes
the following form:

(A2) Vi) = G(¥; (W), Xj (u), e1; 0(w)).

Before stating formally the technical assumptions, we introduce the following two
definitions.

DEFINITION Al. A triangular array of processes Wy 7(0), 0 € ©,t=1,2,--- ,T, T=1,2,--
is locally stationary if there exists a stationary process Wy +(0) for each rescaled time point
t/T € [0,1], such that for some0 < p <landallT,

P< W, () = W,/ (0)] < C T‘1+t>:1
max max [Wi,r(8) - Wy, (0)] < Cr(T™+07) ) =1,
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where Cr is a measurable process satisfying supr E(|Cr|") < oo for somen > 0.

Note that this definition follows from Kristensen and Lee (2023) to let an additional
term p’ appear in the approximation error. This ensures that the process W; 1(0) can
be arbitrarily initialized. The next definition again is borrowed from Kristensen and
Lee (2023).

DEFINITION A2. A stationary process W:(0), 0 € ©, is said to be L p-continuous w.r.t. © for
some p > 1if

(i) [Wt(0)|p < oo forall® € ©;
(it) Ve > 0,35 > 0, such that

1/
E[ max |Wt(e)-Wt(e’)|P} Pe
0':0-9|

€.

Appendix B. Technical assumptions

ASSUMPTION Bl. (time-varying parameters) 0; 1 = 0(t/T) = 6(u), u=t/T, 6(-) : (0,1] —
© and © is compact. Let 04(t/T) (L =1,2, - - - , k) be the Lth elements in 0y,.

(1) 0¢(t/T) satisfies the following

t-3S\Y
|6g(t/T)—6g(S/T)|<Cg<‘ . ') , t5=12,--,T,

where 0 <y < 1 and ¢ is a positive constant satisfying maxg |¢¢| < co.
(i1) 0¢(-) is twice continuously differentiable on (0, 1].
ASSUMPTION B2. (loss process)
(1) £ 7(0) is measurable and three-times continuously differentiable w.r.t. ©;

(i) £t 7(0) is locally stationary with stationary approximation €y +(0) for each rescaled time
pointu € (0,1];

ol; 7(0)

(ii1) 121(51%1(9) = —%g — is locally stationary with stationary approximation ef}})t(e) = M‘g—é(e)

for each rescaled time point u € (0, 1];

45



— : 2
(iv) Foreach j =1,2,--- Kk, 2(2] )(9) = aag%%(e) is locally stationary with stationary approx-
0? fu,t(e)

imation { 2] )(9) for each rescaled time point u € (0, 1].

ASSUMPTION B3. (stationary approximation) For each rescaled time point u € (0, 1],
(1) {y,+(0) is ergodic and Ly-continuous w.r.t 0; E [eu,t(e)} is uniquely minimized at 0(u);

(ii) €,(0) is ergodic and satisfies Bt} >+h(e )|F5) = 0, where ;= o(y:(w), X2 (w), s < 1.
(yi(w), X5 (w)) are the stationary ‘solution of the model given in (A2); central limit
theorem (CLT) holds (as Tb — o0):

T

0y, +(61)
Z tT uéte/ d N(O) d)O,K/\u);

where ok = [o K*(w)du and Ay = Var (aeuéoe(fe”)>;

—_ . 2
(iit) Foreachj =1,2,--- ,k, ef){)(e) is ergodic and all the eigenvalues of ﬁ,(f}(e) = aa%été?)

are uniformly bounded over 6 € ©.

ASSUMPTION B4. (weighting functions) Let K(-) and K(-) be the weighting functions for (3)
and (11), respectively:

(i) K(u) >0, u e Cisa Lipschitz continuous function and [ K(u)du = 1;
(ii) K(u) > 0, u e Cisa Lipschitz continuous function, S K(u)du =1 and @ is compact.

ASSUMPTION B5. (tuning parameters) The tuning parameters b and b are such that: (i)
TS — 0; (ii) b/b — 0; (iii) TY2bY2bY — oo for some 0 <y < 1.

Assumption Bl imposes conditions on the loss, its score and Hessian. We do not
assume stationarity, but require the existence of stationary approximation for each
scaled time point u € (0,1]. This assumption can be verified from more primitive
conditions on G, ¢; and 0(-), which is also related to the existence of stationary solution
of (Al). More details can be found in Dahlhaus, Richter, and Wu (2019) and Karmakar,
Richter, and Wu (2022). Note that, the conditions are also model specific. Karmakar,
Richter, and Wu (2022) provide analysis on both recursive defined time series (tvARMA
or tvARCH models) and time-varying GARCH model. For the quantile regression model
used in Sec. 5.2, the technical details can be found in Zhou and Wu (2009) and Xu, Kim,
and Zhao (2022).

46



Assumption B2 imposes conditions on the approximated stationary process for each
rescaled time point u € (0, 1]. These conditions ensure that certain weak law of large
numbers (WLLN) and CLT can be directly applied in the proof of Lemmas C1 and C2.
Traditionally, this assumption can be verified by primitive conditions such as mixing
conditions on the process. However, as explained in Lu and Linton (2007) and Li, Lu,
and Linton (2012), mixing conditions may lead to some undesirable properties in time-
varying parameter models. We can follow Inoue, Jin, and Rossi (2017) by assuming that
the process is near-epoch dependence. Alternative, we can follow Cai and Juhl (2023),
which make the use of the characterizations of processes from Zhou and Wu (2010).

Assumption B3 impose conditions on the time-varying parameters. While (i) is more
general than (ii) and is sufficient for the consistency of the local estimator, for the
asymptotic optimality of the tuning parameter selection, we do require differentiability.
However, as explained in section 3.1, this condition is not restrictive as the cases consid-
ered in Giraitis, Kapetanios, and Yates (2014) and Dendramis, Giraitis, and Kapetanios
(2021) are included. Assumption B4 introduces conditions for the weighting function.
As explained in Kristensen and Lee (2023), when local linear estimator is used, sup-
port of the weighting function C should be compact. This rules out the use of certain
weighting function, such as Ky(u). Assumption B5 is a condition for the two tuning
parameters which again ensures the asymptotic optimality of the tuning parameter
selection procedure.

Appendix C. Auxiliary results

LEMMA Cl. Suppose that Assumptions B1(i), B2, B3, B4(1) hold with b — 0 and Tb — oc.
Then, it holds that

(i) Consistency: 6 K,b,T N 01,

(i) Consistency rate: for some 0 <y < 1, we have

HéK,b,T - elH = Op((Tb)‘l/2 + by);

(iii) CLT:if TY2pY2ZYY — 0, we have

V'Tb (éK,b,T - 91) L5 N(0, po.xZ1),
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2
where T = HI'A YL, ok = | K2(w)du, Ay = Var (457 and 1y = B[ T 5850 |

PROOF. For the local estimator 0 K,b,T> it is assumed that 8(/T) = 0;. Then 0, is obtained
via M-estimation minimizing the sample loss function:

T
R 1
C1 0 = in — kirls 7(0
(C1) K,b,T arggllflelfel) Tb; 17l 7(01),

where € 7(61) = 0(y; 1, 5’t,T|t-1,T(91)) Let L1(61) = 75 L) ks, 7(61).
Proof of (i): Write LT(01|1) = % ):tzl kerl1,¢(01), where £y +(-) is the stationary approxi-
mation of {; T at the time point 1. By Definition Al, we have

sup |Lt(01) - LT(61]1)] < sup

Tb Z ket |8 7(01) = £1,£(61)]
916@ Gle@

(C2) zktT(T +ph) =0(T™) + O((Th™Y2)) = 0(1),

Tb

where order of the second term follows from Cauchy-Schwarz inequality:

T
bZ 7P \\/ T 2 z K2 \/t§192t=0((Tb‘1/2)).

This implies that (C1) can be viewed as
éK,b,T = arg 5?5@1) L1(01]1).
In view of Theorem 2.1 in Newey and McFadden (1994), it is sufficient to verify that
(i) E[t1,0(0)] is uniquely minimized at 6; (assumed in Assumption B3(i));
(ii) O is compact (assumed in Assumption Bl);
(iii) L7(61]1) is continuous (implied by Assumption B2(i));

(iv) Uniform weak law of large numbers (UWLLN):

esu% = Z kirl1,+(01) — E[l10(0)]] = 0p(D).
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What remains is to show (iv). The ergodicity assumed in Assumption B3(i) implied that

Z kerl 1(01) - E[€1,0(0)]| = 0p(2).

Then, uniform consistency result follows if we could show that L7(01|1) is stochastic
equicontinuous, which follows from the fact that £, +(0) is L; continuous.
Proof of (ii) and (iii): Let us first define the score and the Hessian:

2Lr0) 1 024, 7(0) dL7(0) _ 1 T aetT(e)
1,10 = 5507 sz T 30007 > STO)= —55 Z 1T

.

By a Taylor series expansion of

AL7(0
W = 0 around the true value 01, we have

OLr(1) . 9°Lr(61) 4 _
20 ' ooan (CkbT™01)=

where 0 lies between 6; and 0 K,b,T- By rearranging terms, we have

. 32L7(01)\-1 /dLT(0
eK:b:T‘elz‘( aeTa(e/I)) ( gé 1))
:_(OZLT(Gl))-1<6LT(91)) . (OZLT(Bl))-l_ (62LT(§1)>-1 OLr(61)
2000/ 20 2000/ 2000/ 20
:_(OZLT(Gl))-l <6LT(91)> N (62LT(91)>-1 0°Lr(61) 0*Lr(61)
2000’ 20 0000/ 0000 0000/
(azLT(§1) ) -19L7(01)
2000/ 20
(C3) = -Hy'7(81)S7(01) + Hy 7(61) [Hl,ﬂél) - Hl,T<el>] Hy'7(81)ST(61)

We will show that

(C4) 1S7(61) | = 0p((TH) V2 +bY),
(c3) |Hz @0 = 0,0,
(Ce) ||Hy,7(61) - Hy,7(61)]| = 0p(1).
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These bounds together with (C3) implies the consistency rate in C1(i).
Proof of (C4). We have that

_OLp(6;) _ 1 I 0l 7(6)
S1(81) = 34 _T_btglktT 00
1T dr(0@/T) 1 T 9% 7(61)
S LR e T LT 5gae (01 0(T))
:S BZ T

where the second line follows from Taylor series expansion and 0(1) lies between 0;
and 0(t/T). We see that the score term is decomposed into a variance term S; 7 and a
bias term B 7. Using the similar argument as in (C2), we have

HSLT - ST}TH = o(1).

ol 0(t/T . . .
where SiT = 75 Li=1 ktTw. A further Taylor series expansion around 0; gives

T T 20, +(0
Sir=— % k@) 1L 9%0,(0)

5 5T 50 16 5T a00e (01~ OWT)

* *
= +
S1,1,T 51,2,

By Assumption B3(ii), we have HS{ 1 TH =0 p(\/Lbe) For S7 , 1, together with Assumption
B1(i) and B3(iii), we have

Isi

which implies that ‘

|

02 byt 61)
0000/

’ bzkt

(|t T|> Zkt (|t T|> by/K(u)uydu’

C
’ "

Siz,TH = 0p(bY) = 0p(1). This further implies that || S 7| < ’

k
‘SI,I,T

= 0p()-

Let us move on to analyze the bias term B; 7. Let 0(1) — 06(1). Then, we have that

T 52
1 0°L 7(01) /|t - T|\Y
”l‘gz’TngTbZt:1 KT 30007 ( T ) =Bar
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For By 1,1, following (C2), we have

sup HBZ;T;I - B;’T’IH = Op(by) = op(l),
916@

2
* _ 1 T 070 ¢(01) (|t-T|\Y «:
where BZ,T,]. = T thl ktTW T - Since

1 T 020,00  r9%ty0(6y) 02010(00)7 | /]t~ T|\Y
* - ) _ ) + )
Byra TbtglktT 0000’ E[ 0000/ } E[ 0000/ ] ( T )

:32‘31,t(91) _E[32€1,0(91)}] <|t— TI)Y 1 T [5231,0(61)] (It— T|

1 T
= __ +— Y kTE
b Elk” 0000’ 2000’ T 75 & “TE| 3000 T

* *
= +
By 11,1+ Ba 1,10

By Assumption B3(iii), we have HB; T1 1“ = Op(bY). For B 11 », we again have

which also implies that ‘

B ‘<€iik <’t_T‘>Y~bV/K(u)quu
2,T,1,2|| S by, 2 tT\ o )

B5 11 2” = Op(bY). Then, (C4) follows again from triangular
inequality.
Proof of (C5). It follows again similarly from (C2) that

sup | H,r(01) - Hi 101 = 0,(),
0:€©

2
" _ 1 T 074y,4(01) .
where Hl’T(el) = Tp thl ktTw. Write

1T 020100007 1 T 0%ty ¢(61) 0%41,0(61)
* = __ El—> |4+ _— R LN 1) N i
Hi,7(®1) Tbt)z:lktT [ 0000 } TbtzlktT 0000 [ 3000/ }

(C7) =Hjr,+Hiry=Hjr1(l+ A7),

where Ai} = (Hi T,l)_l (HiT - Hi T,l)' By Assumption B3(iii), there exists v > 0 such that
forallt > 1,
0241 0(8
oy E[ 1,0(01)

T ey
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Thus, we have, for any k x 1 vector a = (ay, - - - , a;)’ such that lal|? =1

i oinye= i (ks g e) > 3 (35 k) o
Jal= “ AT S \Tb 2 2000’ 15 2 kT

This means that the smallest eigenvalue of Hj 1 ; is not smaller than 1/v > 0, which
further implies that

|z =050

In addition, by Assumption B3(iii), we have

|Hir-Hig|| = 0p0).

sp

Then,
- )™ =0,(),

i, < s
[t en]| < g, .

- HHT,T -Hir;

sp
which implies that HHI‘}T(Gl)Hsp = 0,(1).

Proof of (C6). This follow immediately by the consistency: 0 K,b,T 2 0(1).
Back to (C3), we have

VTb (8,7 - 81) = ~H{7(01) VTb(Sy,7 + B,7)

Since H\/ bS; TH 0p(1), ||VTbS, TH p(TY26Y2*Y) under the condition TV/2p1/2*Y —
0, the dominating term is the first one, by applying CLT on V' TbSy T, together with Slut-

sky’s theorem, we obtain

A d
VT (Og b7 - 01) ~ N(0, boI1),

2
where £y = H{'A\H™!, Hy = E [%g(e?ﬂ and Ay = Var <a€léoe(fel)>' 0

LEMMA C2. Suppose that Assumptions BI(i1), B2, B3, B4(ii) hold with b— 0and Th — co.
Then, it holds that
|67 - 01 = 0p((TBy M2+ 12).
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PROOF. The objective function is given by

Mq

Lr(01,0) = Tet,T(eﬁegD(t/T-l)).

t=1

Define 31 =01 + egl)(t/T - 1). Similarly as in (C3), we have that

éT -0 _ aL%(Bl) -1 aLT(Bl)
8 (é;” i eP) ~(oprop) oy oo
Notice that

ot (p) ey t,r (1) ()

OLF(B) _ | b 75 Zim KT, AT 77 L=l T 0000
B10p" ( ) ) < )
$10P7 1yt I~<Ta ber| B <ﬂ) 1yT ]~<Ta ter( B <ﬂ)2

Using similar arguments for the proofs of (C4)-(C5), we have

2 2
1 1. r(B) 1 1. %r(B) e i
— k =0 ]., —= k 7 =0,(b
Tbh El 0,00, p() Th El T 20,00,V ( T ) p(®)
11 r(B) et oz (B eorye|
— ¥k =0,(), | = ¥k : = 0, (b
Th & a0Wap! ()| = 0x® 15 & ae?)ael(l)( ) i

Using the property of the inverse of the partitioned matrices (see, Abadir and Magnus
(2005)), we have

(aL%wl))—l: Op(1)  Op(b™)
0B10pB] 0p(b™) 0,(b)]

Next, we have

1 «T 7 aft,T(Bl) -
oLr(By) _ | 7ot KT o, ST
(C9) 0B1 | LyT j.2ur(B) ()| S|
ﬁth tT aegn (T) 2T
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By Assumption B1(ii), we have that

o -0, (57) + 5 ()"

Then, for §1’T, Taylor expansion around 0(¢/T) gives

o _ 1 T.0tr(eT) 1 I. 0% r(01) @y (t-T
SI’T_T_I;ElktT 30, +Et§1k” 00,00/, (9 0 (1)< )'e(t/T)>
1T r(0WD) 1T 21(8;) 0 roTy2
_T_Z;tglktT 0071 +T_Z~7t=1ktT 59169/1 2 ( T )’

where 01 lies between 0(t/T) and (1. Similarly, we have

T T
_;kﬂ ae(1> ( ) T_IS; T 200 ae W 2 ( )

Now, back to (C8), we have

- = Aty r(8(t/T)
(eT-el>_ <6L%<Bl>>—1 %Zﬁlkﬂ%
5@ _ oM | 7\ 3p0p/ = 7 (01) (4o

GT 91 B1 Bl %7):?:1 kor tT( 1) (ﬂ) /

083 T

~—
QT

= 0 etT(el) 0@1) (-T2
_ (aL%(Bll))‘l Tb 5 L tTa’OEG a(ee;) (2? <T>3
0310 7 2]
$10P] ):t ket e(tl)ge’(ln o) <TT)
QZ,T

Following again the proofs of (C4)-(C5), we have

O = [0rE).

0p((Tb)™2p) |’ b

Qur = 0,()

Therefore, we obtain the consistency rate for 07:

|or-61 = 0p((TD) 2+ 22).
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O]

LEMMA C3. Suppose that Assumptions B1(1), B2, B3, B4(i) hold with b — 0 and Tb — oc.
Then, for some 0 < & < % and 0 <y < 1, it holds that

(C10) sup || 5,7~ 01 = 0p(rr,p,5.,),
bEIT

wherery 5, = T-12p-1/248 4 py,

PROOF. Write éK bT = éb,T- As in (C3), the estimator can be decomposed as

éb,:r - 01 =-Hy1ST+0p(1)
(C11) = =Hy 7(S1,1 + Ba,1) + 0p(1),

where

oty 7(6(t/T)) 1 T 9% 7(61)

L ket 0000’

_ _ L 0, - 0(t/T

and 0; lies between 0; and 0(¢/T). We will show that

(C12) su E LS LGVl (1), for 0<5<1/2

o || TR 5T oe plh; ’

-1
1 T 9% 7(69)
1 — ATV = 0,0
(C13) et (Tb L k5501 Op(D),
92¢; (6

(C14) sup = y ktTt’—T(ll) (81-6(t/T))|| = Op(bY) for 0<y <1

These bounds together with (C11) prove (C10).
Proof of (C12). By Boole’s inequality and Chebyshev’s inequality, we have, for any

€ >0,
1 T ol; 7(01) H 1 T 3¢, 7(87)
Pl su — Y kr———"| > | < P k s >
<beII; HT1/2171/2‘5 BT 20 beZIT TS & T o9
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< |It| x sup P
bGIT

1 T 0l 7(07)
Y kg
T1/2p1/2-8 =1 00

)

< Ir| x sup
EIT

P2 =0(1),
where the third inequality follows from (C4).
Proof of (C13). As in (C5), consider HiT

1 T 0%,(0) 1T

¥ krE|

0%1001)7 1 I 0%01,4(61) 9%41,0(67)
5 5 T 30007~ T & J+ ker -E| }

0000/ Tbi= 7\ 0000/ 0000’
(C15) =Hir1+Hiry=Hi1(l+ A7),

where A% = (HT,T,1> (H ir-Hir, 1)- First, (C5) holds uniformly over b

1
(C16) sup H (HiT,l)
be IT

= 0,(1).

sp

. ~ 2 2
For Ak, let Af = 9 6%)5(99/1) - E[a a%’gée,)l)} . Then, for any ¢ > 0, , by Boole’s inequality and

Chebyshev’s inequality, we have
>e | < Z k TA
) be IT ( H Tb g g >

< [It| x sup P H ): kT A}
bEIT

1 T ~
P | sup H— Y krA}
bEIT Tb

Similarly as in the proof of (C12), we have

(C17) sup

Since the cardinality of the set |I7| must be o(1), we have sup;, I7 HA;H = 0p(1). To
sp

sum up, we continue from (C7):

. 1
sup HHT)‘% sup H(HiT 1)_1 <1—sup HA’} ) = 0p(1).
belr belr spP belr
04(1) by (C16) 05(1) by (C17)
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This also implies (C13).
Proof of (C14). Let 0; — 07 and consider B;)T:

. 11T 0201 4(87) 1%410(61) 1T 0%41,0(61)
Br=mk tT( 0000/ _E[ 0000/ } (el_e(t/T))JrT_bElktTE[ 0000/ }(el_e(tm)

* *
= +
By 1% By -

For B;)le, again, similarly as in (C12), we have

P sup HB§T1H>E <Y P ‘B§T1H>e
be I L] bEIT SES)

< |z x sup P (HBENH > s) = 0(B"™),
bEIT 7

for some 0 < 6 < 1/2. Moving to B} 1 ,, notice that

’ B

which holds uniformly over b. Thus, we have

T
1 - T| )
2.T,2| < C(_Tb tEZI ktT(—T )Y> ~ bY /e uYK(u)du = O(bY),

sup HBE,TH < sup HBZ,T;H + sup HBZ,T,zH = 0p(bY),
bGIT bEIT bEIT

which implies (C14). O
LEMMA C4. Define

L(b) = (8,7 - 61)" wr(81) (O, 7 - 61),
A(b) = (0,7 - 67)’ wr(O7) (8,7 - O7),

where éb,T = éK pr =and wr(0) = ET(azzfgg%se)). Suppose that Assumptions BI-B5 hold, we
have
L(b) - A(b)
(C18) sup |————=| = 0p(1).
A ) i
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PROOF. Let us first expand A(D):

A(b) = (6,7 - 67)’ wr(O7) By, 7 - O7)

(07 -61))

dwr(61) dwr(61) -
50 0, (eT-el)D

= (0,7 -6, + 01 +07)’ <wT(91) + [

(. J

Or(01) pep
X (Op, - 01 +01 +67)
= L(b) - 2(6p, 7 - 61) wr(61)(B7 - 61) + (O - 81)' wr(81)(O - 61)
+ (8,7 - 01)' ©7(81)(Bp, 1 - 01) - 2(8, 7 - 81)' D (01)(O - 61)
+ (07 - 01)' r(081)(O7 - 07)
= L(b) - 2D1(b) + D} + Do(b) - 2D3(b) + D),

where

Dy(b) = (0,7 - 61)' wr(01)(O7 - 61), Dy = (67 - 01)' wr(61)(O1 - 61),
Dy(b) = (8,1 - 81) @1(01)(Op 7 - 01), D3(b) = (6}, 7 - 01) W1 (61)(O7 - 61),
D) = (Or - 81)' d1(81)(O7 - 01).

Then, we have

L(b)-A(B) _2Dy(b) _ Di _Dy(t)  Ds(k) D
L(D) L) L) L) LB LK)

By Lemma C2 and Assumption B5(i), we have
(C19) |67 - 01 = 0p((TBy™2).

We will show that

Dy(b), _ Dy(b), _ D3(b), _
(C20) :;1113 |W| =0p(1), ;;111; | 10 | =0p(D), ;;1113 | 10 | =0p(1),
Dy _ Dy _
(C21) s;l}i; \@’ =o0p(D), ;;JIPT !%\ = 0p(D).

These bounds together with triangular inequality imply (C18).
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Proof of (C20). First, by Lemma C3, we have

(C22)  sup |L(b)| < sup Héb,T_elH lwr(01)]l5p sup Héb,T‘elH = 0p(5.)>
belr belr belr

for some 0 < § <1/2and 0 <y < 1. Write r - = (Tb) -1/2 , we also have

sup [Dy(b)] < sup |0y 7 - 01| [wr(®1)llsp HéT‘ 91“ = Op(rrbs,y7r )

bEIT bEIT
sup Do < sup B4 or@)lsp sup Bz -] = 0 (55,77
bEIT bGIT bGIT )
sup [D3(b)| < sup |05~ 01| [[DT@D]sp HéT - 91H = 0p(rrbsy73)-
belr belr )
These bounds imply that
Dy (b) b
p | ’:O< : )=o(l)
bely L(b) P\rrpsy/ 007

P
where W — 0 is guaranteed by Assumption B5. Similarly, we have
P J‘Y

Sup ‘DLz(gj))’ = OP( T b) = Op(l);

as Tb — co. Finally, we have

=2
D3(b)

Tb
sup |22 =0,(—L0 ) = 0,1),
belr L(b) p<rT,b,6,y> P

where fT b 5 — 0is again guaranteed by Assumption A(6)).
Proof of C21). First, it is straightforward to show that

|D|_Op ); |D|_Op Tb)
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Together with (C22) and following the same reasoning above, we have

/ T D, i
sup | 351 = Op(72~) =opD sup I 51=0p(570) = 050
beIr "T,b,8,y bel T b5,y

Appendix D. Proofs of the theorems

D.1. Proof of Theorem1

~ A 2
Write eK,b,T = 0p,r and wr(8y) = ET(%> . It follows from Lemma C1 that, the

infeasible objective function can be written as

(65,7 - 01)' wr(61) (Op, 7 - 01) = 74T,

where g7 is a scalar Op(1) random variable and rr;, ,, = (Th)™2 + bY for some 0 <y < 1.

- I S
The first-order condition of ry 5, with respect to b gives b = Op(T 2v*1). Since the
second order derivative of r7 3, |, is always positive, the optimal bandwidth minimize
the objective function.

D.2. Proof of Theorem 2

. A A 0207,5(0
Write eK,b,T =07 and wp(0q) = Eq(%e(,l)) Let

~

b:=arg gellln (0,7 - (1) wr(6(1)) By, 7 - 6(1))

be the bandwidth selected according to the feasible criterion. As in the proof of Lemma
B4, the decomposition of A(b) implies that

A(b) = L(b) - 2D (b) + D, + Do(b) - 2D3(b) + Db.
Then, we have

A _ L) 2y() D)  203) Dy Db
infpe, L(B)  infper, L(B)  infpep, L(b)  infyep L(B)  infpey, L(B)  infpep, L(b)  infyep, L(D)

= 1(b) + Ip(b) + I3 (D) + I4(b) + I + I
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Following (C20) and (C21), we have
L(b) =0p(1), L) =0p(1), L) =0p(1), Is=0pQ), Is=0p).

What remains is to show that
ne) 1,

which is equivalent to verify that, for any b, ¥/ € Ir,

L(b) - L(Y) - (A(b) -A(Y)) | »p
o L(b) + L(V) =0
This follows immediately from Lemma B4:
L(b) - L(Y) - (A(b) - A(Y)) L(b) - A(b) L)) - A, _
A L (O S1 B e L /(O R A () N

D.3. Proof of Theorem 3

In Lemma C1, we show that the local estimator obeys the following expansion:
O b7 - 01=-Hy 7SL,T - H_ 7Ba T,

where

T T T
3% 7(61) aﬂtT e(t/T)) 020,( e1

and 0, lies between éK,b,T and 0;. Following the proof of Lemma C1, 1)1TH = 0p(1),
= 0,((Th)1/2), = 0p(bY), when TY2pY2*Y —; 0, the dominating term is
S1,7- CLT in LemmaCl(ii) holds. Theorem 3(i) follows immediately from continuous

mapping theorem.
When TY2bY/2*Y — oo, the dominating term is Sy 7. By similar analysis as in the
proof of Lemma C1, we have

azeljo(el)}
pJ

— P
bYSp,r — “%KE[ 2000’

where € = (c1, -, CE)/ is a collection of constant given in Assumption B1(i). Theorem 3(ii)
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follows again from continuous mapping theorem. Theorem 3(iii) follows immediately
by combining the results obtained in (i) and (ii).
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Appendix E. Data appendix

TABLE El. Data description and variable transformation: USA, Sec. 5.1

Asset prices
FEDFUNDS Effective Federal Funds Rate (Percent) 2
TB3MS 3-Month Treasury Bill: Secondary Market Rate (Percent) 2
GS10 10-Year Treasury Constant Maturity Rate (Percent) 2
GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent) Ve
termspread 10-Year Treasury Constant Maturity Minus Effective Federal Funds Rate (Percent) Ve
S&P 500 S&P’s Common Stock Price Index: Composite 100A1n y,
VXOCLSx CBOE S&P 100 Volatility Index: VXO Vs
Real economic activity
DPIC96 Real Disposable Personal Income (Billions of Chained 2012 Dollars) 100A1n y,
GPDIC1 Real Gross Private Domestic Investment, 3 decimal (Billions of Chained 2012 Dollars) 100A1n y,
INDPRO Industrial Production Index (Index 2012=100) 100A1n y,
CE160V Civilian Employment (Thousands of Persons) 100A1n y,
UNRATE Civilian Unemployment Rate (Percent) 2
LNS14000026 Unemployment Rate - 20 years and over, Women (Percent) Ve
HOUST Housing Starts: Total: New Privately Owned Housing Units Started (Thousands of Units) 100A1n y,
PERMIT New Private Housing Units Authorized by Building Permits (Thousands of Units) 100A1n y,
Price indices
CPIAUCSL Consumer Price Index for All Urban Consumers: All Items (Index 1982-84=100) 100A1n y,
CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel (Index 1982-84=100) 100A1In y,
CPIENGSL Consumer Price Index for All Urban Consumers: Energy (Index 1982-84=100) 100A1n y,
PPIACO Producer Price Index for All Commodities (Index 1982=100) 100A1n y,
PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index 2012=100) 100A1n y,
Monetary measures
BOGMBASEREALx Monetary Base (Millions of 1982-84 Dollars), deflated by CPI 100A1n y,
MIREAL Real M1 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 100A1n y,
M2REAL Real M2 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 100A1n y,

Notes: The data are taken from FRED-QD (McCracken, Ng et al. (2021)) and the mnemonics are exactly as in FRED-QD.
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TABLE E2. Data description and variable transformation: Canada, Sec. 5.1

Asset prices
BANK_RATE_L Bank rate Vs
TBILL_3M Treasury bills (3 months) Vs
GOV_AVG_10pY Governmental bonds (average rate) (10+ years) 2
G_AVG_5.10.Bank_rate Government bonds (5-10 years) - Bank rate 2
G_AVG_10p.TBILL_3M Government Bonds (10+ years) - Treasury Bond (3 months) Ve
TSX_CLO Toronto Stock Exchange (close) 100A 1n y,
Real economic activity
REAL_GDP Real Gross domestic product, chained (2012) dollars 100A1n y,
hhold_dispo_income Households disposable income 100A1n y,
REAL_I Real Gross fixed capital formation, chained (2012) dollars 100A1n y,
CANPROINDQISMET* Production: Industry: Total Industry Excluding Construction for Canada  100A1n y,
LFEMTTTTCAQ647S* Employed Population: Aged 15 and over: All Persons for Canada 100A1n y,
UNEMP_CAN Unemployment rate 2
hstart_CAN House Starts (units) 100A1n y,
Price indices
CPI_ALL_CAN Consumption price index (CPI) (all) 100A1n y,
IPPI_CAN Industrial production price index (IPPI) (all) 100A1n y,
C_PRICE Implicit price index : Final consumption expenditure, 2012 = 100 100A1n y,
Monetary measures
MBASE1 Monetary base 100A1n y,
CRED_BUS_cb Business loans, Chartered banks only 100A1n y,
CRED_HOUS_cb Personal loans, Chartered banks only 100A1n y,

Notes: The mnemonics with an asterisk indicate that the variables are taken from Federal Reserve Economic Data (FRED). All

the other variables are taken from Stevanovic et al. (2021).
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TABLE E3. Data description: Sec. 5.2

Variable
CatFin
Default spread
TED spread
Term spread
Slope factor
VIX

Stock return

Data source
Allen, Bali, and Tang (2012)
FRED
GFD
GFD
Liu and Wu (2021)
FRED

FRED

Variable description
measure of aggregate systemic risk
difference between yields on BAA and AAA corporate bonds
difference between 3-month LIBOR and 3-month T-bill interest rates
difference between yields on the ten year and the 3-month treasury bond
slope factor of the yield curve (1-120 month)
Chicago Board Options Exchange’s CBOE volatility index

S&P500 composite index return

Notes: FRED refers to Federal Reserve Economic Data. GFD refers to Global Financial Database.
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TABLE EA4. Data description and variable transformation: Sec. 5.3

Variable Data source Variable description Transformation
United States
stock return CRSP S&P500 value-weighted index return Vi
treasury bill FRED 3-month treasury bill: secondary market rate Vs
spread GFD differences between 5-year government bond yield and 3-month treasury bill Ve
inflation FRED changes of Consumer price index for all urban consumers: all items in U.S. city average 100A In(y,)
growth FRED changes of Industrial production: total index 100A In(y,)
Canada
stock return GFD S&P/TSX-300 total return index 100A In(y,)
treasury bill GFD 3-month treasury bill yield Vi
spread GFD differences between 10-year government bond yield and 3-month treasury bill Vi
inflation FRED changes of Consumer price index: all items: city: total 100A In(y,)
growth FRED changes of Production: industry: total industry: total industry excluding construction 100A In(y,)
France
stock return GFD CAC all-tradable total return index 100A In(y,)
treasury bill GFD 3-month treasury bill yield 52
spread GFD differences between 10-year government bond yield and 3-month treasury bill Vs
inflation FRED changes of Consumer price index of all items 100A In(y,)
growth FRED changes of Production of total industry 100A In(y,)
Germany
stock return GFD CDAX total return index 100A In(y,)
treasury bill GFD 3-month treasury bill yield Ve
spread GFD differences between 5-year government bond yield and 3-month treasury bill Ve
inflation FRED changes of Consumer price index: all items: total 100A In(y,)
growth FRED changes of Production: industry: total industry: total industry excluding construction 100A In(y,)
Australia
stock return GFD ASX accumulation index-all ordinaries 100A In(y,)
treasury bill GFD 3-month treasury bill yield Ve
spread GFD differences between 10-year government bond yield and 3-month treasury bill Ve
inflation FRED changes of Consumer price index: all items: total 100A In(y,)
growth FRED changes of Production: industry: total industry: total industry excluding construction 100A In(y,)

Notes: CRSP refers to Center for Research in Security Prices. FRED refers to the database maintained by the Federal Reserve
Bank of St.Louis. GFD refers to the Global Financial Database. For Australia, CPI and industrial production are only available at a
quarterly frequency.
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TABLE ES5. Data description: Sec. 5.4

Country Data source Sample period N;
United States Liu and Wu (2021) 1961M6-2022M12 60
Canada Bank of Canada 1986M1-2022M12 20

United Kingdom Bank of England 1970M1-2022M12 9

Japan Ministry of Finance  1980M8-2022M12 5

Notes: N; is the number of variables (different maturities, up to 5 years) available in each country.

Appendix F. Additional tables and figures
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TABLE F1. Forecasting performance for inflation in the United States: 2020Q1-2023Q1

UCsV 5.351
AR(4) 0.855

Non-local R=40 Opt-R Opt-G Opt-E

Asset prices
FEDFUNDS 0.878 1.150 1.092 1.084 1.078
TB3MS 0.874 1.163 1.091 1.099 1.091
GS10 0.864 1.079 1.072 1.062 1.039
GS10TB3Mx 0.851 1.163 1.102 1.081 1.115
term spread 0.850 1.168 1.111 1.092 1.128
S&P 500 0.859 1.262 1.263 1.075 1.243
VXOCLSx 0.856 1.255 1.242 1.170 1.297

Real economic activity

DPIC96 0.863 1.276 1.206 1.109 1.228
GPDIC1 0.888 1.477 1451 1.280 1.694
INDPRO 1.090 1.651 1.697 1.453 1.929
CE160V 2.658 6.570 7465 4.542 10.500
UNRATE 0.934 1.090 0.917 1.023 0.906
LNS14000026 0.922 1.056 0.954 0.996 0.900
HOUST 0.865 1.099 1.110 1.089 1.107
PERMIT 0.853 1.240 1.188 1.114 1.208
Price indices
CPIAUCSL 0.885 1.221 1.178 1.088 1.189
CPIAPPSL 1.051 1.199 1.050 1.108 1.149
CPIENGSL 0.871 1.172 1.139 1.080 1.124
PPIACO 0.881 1.301 1.286 1.109 1.256
PCECTPI 0.863 1.235 1.147 1.106 1.214
Monetary measures
BOGMBASEREALx 0.916 1.045 1.126 1.197 1.100
MIREAL 2.208 2.517 7.956 6.290 7.311
M2REAL 0.968 1.647 1.547 1.304 1.716

Notes: The description of predictors is detailed in Table E1. See Table 3 for details on the implementation.
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TABLE F2. Forecasting performance for inflation in Canada: 2020Q1-2023Q1

UCSV 51.517
AR(4) 0.826

Non-local R=40 Opt-R Opt-G Opt-E

Asset prices
BANK_RATE_L 0.827 0.829 0.920 0.799 0.851
TBILL_3M 0.828 0.875 0.993 0.807 0.902
GOV_AVG_10pY 0.832 0.853 0.894 0.825 0.890
G_AVG_5.10.Bank_rate 0.829 0.964 0.931 0.833 0.984
G_AVG_10p.TBILL_3M 0.828 0.923 0.941 0.834 0.936
TSX_CLO 0.816 0.954 0.960 0.822 1.070

Real economic activity

REAL_GDP 1.005 1.583 1.145 1.021 1.598
hhold_dispo_income 0.794 0.899 0944  0.854  0.949
REAL_I 0.850 1.054 1.119 0.954 1.143
CANPROINDQISMEI 0.839 0916 0.817 0.780 0.907
LFEMTTTTCAQ647S 1.465 3.180 3.191 2.256 3.727
UNEMP_CAN 0.842 0.679 0.768 0.704 0.808
hstart_CAN 0.823 0.940 0.943 0.829 0.960

Price indices

CPI_ALL_CAN 0.837 0.902 0.947 0.775 0.912
IPPI_CAN 0.832 0.942 0.954 0.872 0.968
C_PRICE 0.785 1.008 1.022 0.908 1.043
Monetary measures
MBASE1 2.703 21.638 59313 11931  67.582
CRED_BUS_cb 0.827 0.955 0.939 0.843 0.994
CRED_HOUS_cb 0.860 0.833 0.775 0.787 0.870

Notes: The description of predictors is detailed in Table E2. See Table 3 for details on the implementation.
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