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1. Introduction

Many important economic decisions are based on a forecasting model that is known
to be affected by parameter instability. It is now widely recognized that parameter
instability is a crucial source of forecast failure. For instance, full sample parameter
estimation might be inconsistent under parameter instability, results in poor out-of-
sample (OOS) forecasting performance. The empirical evidence has also been well
documented, see, for instance, equity premium forecasting (Welch and Goyal (2008)),
volatility forecasting (Inoue, Jin, and Pelletier (2021)) and macroeconomic forecasting
(Stock and Watson (1996)).

Motivated by concerns of parameter instability, forecasters often want to make pre-
dictions using the most recent data. They may do this by using a window of recent data,
which is the so-called “rolling window” forecast scheme. As rolling window estimator
is a special case of the local estimator when a flat weighting function is used (Inoue, Jin,
and Rossi (2017)), forecaster may have alternative choices of weighting functions and
need to select the tuning parameter. This paper aims to address three issues associated
with the local estimator in an out-of-sample forecasting context.

First, while the local estimator is quite popular in the applied work, it remains
unclear what types of parameter instability are allowable to achieve consistency. We
first show that under a general condition on the amount of time variation in model
parameters, the local estimator is consistent. This covers a broad range of parameter
instability considered in the literature, which include local structure break, smooth
structural change (Robinson (1989), Cai (2007)) and realization of bounded persistent
stochastic processes (Giraitis, Kapetanios, and Yates (2014), Dendramis, Giraitis, and
Kapetanios (2021)). The consistency rate depends on the amount of local time variation
and estimation becomes more precise when the amount of these variations are small.

The second and third issues are related to out-of-sample forecasting. We show that,
from an end-of-sample risk reduction perspective, minimizing the end-of-sample risk
is equivalent to minimize the regret risk (Hirano and Wright (2017)), which depends
on the weighting function and tuning parameter associated with the local estimator.
These are the two inputs forecaster has to choose. Tuning parameter determines the
effective number of observations used in the local estimator and simplifies to window
size when an indicator weighting function is used. We propose method to select the
tuning parameter by directly minimizing the regret risk. The procedure is similar to
the one proposed in Inoue, Jin, and Rossi (2017) for rolling window selection, but we

1



show that the asymptotic optimality holds when a generic weighting function is used
for local estimation and a general loss function is used for forecast evaluation. The
optimality does require stronger condition on parameter instability, but as we point
out, this covers all cases considered in the literature.

Finally, we provide analyses on the choice of the weighting functions, which has
been less addressed in the literature. Our analyses are based on the limiting behavior
of the regret risk, which reflects the usual bias-variance trade-off. We show that, when
estimation variance from the local estimator dominates, the regret risk converges in
distribution to a zero-mean random variable. In this case, both the convergence rate
and the term related to the weighting function do not depend on the types of parameter
instability. When estimation bias dominates, regret risk converges in probability to
a non-zero constant. In this case, both the convergence rate and the term related to
the weighting function are related to the property of parameter instability, making the
choicemore involved.However, this still provides someguidance on the implementation
of tuning parameter selection procedure.

The theoretical analyses are examined through an extensiveMonte Carlo study using
a linear predictive regression model. We find that, the local estimator performs well
under various types of parameter instability, but the estimation quality does depend on
the amount of local time variation. In terms of forecasting performance, we find that
our tuning parameter selection procedure works pretty well. In general, using all but
downweighting the data is preferred.

We present four empirical applications on forecasting inflation, growth and inflation
shocks, house prices and bond returns. These applications illustrate a variety of envi-
ronments (target, validity of assumptions, forms of regret risk, estimationmethods, loss
functions). We would like to examine whether using local estimator with optimal tuning
parameter selection improves forecast accuracy compared to well-known benchmark
forecasts. In addition, we are more concerned on whether choice of weighting function
matters in these applications.

Our empirical results are promising. Using local estimator with optimal tuning
parameter selection procedure generally delivers gains. Choice of weighting function
does have an impact on forecasting performance, but using a flat weighting function is
generally outperformed by alternative weighting functions. We briefly summarize our
main findings below.

(i) In the first application, we consider inflation forecasting for the United States (U.S.)
and Canada. We find that a simple autoregressive distributed lag model performs
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quite well for Canada and could still achieve gains if certain predictor is used
for U.S., such as the growth rate of civilian employment. In terms of weighting
functions, we find that using all but downweighting the data is preferred.

(ii) In the second application, we consider the use of predictive quantile regression to
forecast how specific features of the macroeconomic shock distributions respond
to systemic risk.We find that TED spread (differences between 3-month LIBOR rate
and 3-month treasury bill rate) is a useful predictor for left tail information about
growth shocks, as well as inflation shocks for both left and right tail information.
We again find that using all but downweighting the data is preferred.

(iii) We examine the international predictability of real house price changes in the
third application. We find that, mixed frequency data sampling regression model
(MIDAS) performs better particularly when the specification is based on valuation
ratio. In terms of weighting functions, using only the recent data and downweight-
ing them is preferred.

(iv) We consider international excess bond return predictability in the fourth appli-
cation. We find that gains are quite substantial and significant in many cases
compared to benchmark forecasts from principal components of the global yield
curve. We find that using only the recent data and downweighting them is pre-
ferred.

The rest of the paper is organized as follows. Section 2 presents the setup and
local estimation. Section 3 discusses selection of the tuning parameter and choice
of weighting function from an end-of-sample risk reduction perspective. Section 4
providesMonte Carlo study on the theoretical analyses. Section 5 presents our empirical
applications, and Section 5 concludes. Data descriptions are provided in the Appendix.
Technical assumptions, auxiliary results lemmas and the proofs of the main theorems
are provided in the supplementary material.

NOTATION: ∥·∥ is the Euclidean norm. |·| denotes the associated norm when · is one
dimensional. f (i)(x) = di f (x)

dxi
denotes the ith derivative of function f (·) with respect to

x. xn = O p( yn) states that the vector of random variables xn is at most of order yn in
probability, and xn = o p( yn) is of smaller order than yn in probability. xn ≍ yn states

that xn/ yn = O p(1). The operator
p→ denotes convergence in probability, and d→ denotes

convergence in distribution. ET[·] = E[·|FT] is the conditional expectation operator,
where FT is the information set available at time T.
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2. Estimation under parameter instability

Let { yt}t be the scalar variable of interest and {Xt}t be a s × 1 vector of predictors (which
may include lags of yt). We wish to forecast yT+h(1 ⩽ h <∞), given the knowledge of
XT1. The forecast ŷT+h|T is created using a rule: ŷT+h|T(θ), where θ ∈ Θ ⊆ Rk is a k × 1-
dimensional model parameters. The model parameters are estimated viaM-estimation
minimizing

(1) θ̂T = argmin
θ∈Θ

1
T

T∑
t=1

ℓt(θ),

where ℓt(θ) = L( yt+h, ŷt+h|t(θ)) is some in-sample loss function.

EXAMPLE 1. Consider the linear predictive regression model:

yt+h = X
′
tθ + εt+h, t = 1, 2, · · · ,T – h,

where {εt+h} is a disturbance term. Then, OLS estimator is equivalent to (1) when ℓt(·) is the
mean squared error loss: ℓt(θ) = ( yt+h – X′

tθ)2.

It is well known that parameter instability plagues commonly used forecasting mod-
els and predictive content is unstable over time (Rossi (2013)). To handle the instability
issues and remain agnostic on the types of parameter time variation, we assume that the
time-varying parameters aremodeled as the function of scaled time point u = t/T ∈ (0, 1]

(2) θu = θ
(
t/T
)
= θ(u), θ(·) : (0, 1] −→ Θ.

As explained in Robinson (1989), the requirement that time-varying parameter is a
function of scaled time point is essential to derive the consistency of the nonparametric
estimator, since the amount of local information on which an estimator depends has to
increase suitably with sample size T.

Since the forecasts and their evaluations are based on θ(1)2, we consider a local
1We only consider direct forecast when h > 1.
2The target yT+1 depends on parameter θ(1 + 1/T), which is different from θ(1). However, under

Assumption A4(i), the local time variation is asymptotically negligible, we shall treat θ(1) as the parameter
related to the target.
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estimator for θ(1) defined by

(3) θ̂K,b,T = argmin
θ∈Θ

1
Tb

T∑
t=1

ktTℓt(θ),

where ktT = K
(
(t – T)/(Tb)

)
, K(·) is a weighting function, and b = bT > 0 is a tuning

parameter satisfying b → 0, Tb → ∞ as T → ∞. Different specifications of K(·) lead
to different types of forecasting schemes. If ktT = 1 for all t, we are back to the non-
local estimation as in (1). If K(u) = 1{–1<u<0}, we are in the rolling forecast scheme with
window size ⌊Tb⌋ (Giacomini and Rossi (2009)).

Local estimator like (3) is widely used in the out-of-sample forecasting context under
parameter instability. Typically, it (mainly rolling window estimator) is used under the
case when parameters are assumed to have break points, possibly at unknown dates
(Pesaran and Timmermann (2007)). In this case, (2) is a piecewise continuous function
on (0, 1]. It can also be used when (2) is twice continuously differentiable on (0, 1] (Inoue,
Jin, andRossi (2017)).What are theminimum requirements on (2) to achieve consistency
of (3)?

For the ℓth elements in (2), consider the condition

(4) |θℓ(t/T) – θℓ(s/T)| ⩽ cℓ
( |t – s|

T

)γ
, t, s = 1, 2, · · · ,T,

for some 0 < γ ⩽ 1 and cℓ is a positive bounded constant. This is similar to a Hölder
continuous condition. The amount of local time variation vanishes asymptotically as
T → ∞. Chen and Hong (2016) derives the consistency of estimator like (3) for GARCH
models, but consistency rate is not provided. The case when θ(t/T) is twice continuous
differentiable on (0, 1] (Robinson (1989), Cai (2007)) also satisfies (4). Giraitis, Kapetanios,
and Yates (2014) show that (3) can handle realization of persistent bounded stochastic
processes. For example, realization of bounded randomwalk process θℓ,t = 1√

T
vt, where

∆vt
i.i.d.

∼ (0, 1) satisfies (4) with γ = 1/23. Similar condition is also used in Li and Müller
(2009) for unstable generalized method of moments models. They consider both the
case of realization of bounded random walk process and local one-time break of the
form: θℓ(·) = aT1{t/T>e}, where e ∈ (0, 1] and aT = o(1) as T → ∞.

3As shown in Dendramis, Giraitis, and Kapetanios (2021), such process satisfies the condition |θℓ,t –
θℓ,s| ⩽ ξℓ,ts

(
|t–s|
T

)γ
, where ξℓ,ts has a thin-tailed distribution: P

(
|ξℓ,ts| > ω

)
⩽ exp

(
– c0|ω|α

)
,ω > 0,

for some c0 > 0, α > 0, which does not depend on ℓ, t, s and T. Then, we could always find a generic cℓ
such that realization of the process satisfies the condition (4).
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In the Appendix, we provide a formal technical discussion on the properties of the
local estimator (3). We adopt the framework of locally stationary process, which has
been increasingly popular in the recent time series literature (Chen and Hong (2016),
Karmakar, Richter, and Wu (2022), Kristensen and Lee (2023)). Under (4) and other
regularity conditions, θ̂K,b,T is consistent: θ̂K,b,T

p→ θ1. In addition, the consistency
rate is given by ∥∥∥θ̂K,b,T – θ1∥∥∥ = O p((Tb)–1/2 + bγ),
where b→ 0, Tb→ ∞ as T → ∞. The consistence rate is inversely related toγ. Relatively
large γ implies that local changes are small, the estimation bias vanishes at a faster rate.
When γ is too small (large local changes), consistency rate gets distorted. When (2) is
assumed to be differentiable, it can be easily shown that the consistency rate is given
by (Tb)–1/2 + b (provided that K(·) is symmetric).

3. Out-of-sample forecasting

To implement the local estimator (3), a forecaster faces a concrete decision problem
as she has to choose weighting function K and tuning parameter b. In order to under-
stand the implications of selecting K and b, we will analyze the end-of-sample risk
ET
(
ℓT+h(θ̂K,b,T)

)
. Provided that ℓt(θ) is twice continuously differentiable w.r.t. θ ∈ Θ, a

second-order Taylor series expansion around the true θ(1) gives (ignoring the smaller
order terms)4:
(5)

ℓT+h(θ̂K,b,T) ≈ ℓT+h(θ1) +
∂ℓT+h(θ1)

∂θ′
(θ̂K,b,T – θ1) +

1
2
(θ̂K,b,T – θ1)

′ ∂
2ℓT+h(θ1)
∂θ∂θ′

(θ̂K,b,T – θ1),

where θ1 lies between θ̂K,b,T and θ1. Taking conditional expectations on both sides we
then find

ET
(
ℓT+h(θ̂K,b,T)

)
≈ ET

(
ℓT+h(θ1)

)︸ ︷︷ ︸
R1T

+ET
(∂ℓT+h(θ1)

∂θ′

)
(θ̂K,b,T – θ1)︸ ︷︷ ︸

R2T

+
1
2
(θ̂K,b,T – θ1)

′ ET
(∂2ℓT+h(θ1)

∂θ∂θ′

)
(θ̂K,b,T – θ1).(6)

4Following Granger (1969) and Weiss (1996), we use the same loss function for parameter estimation
and out-of-sample forecasting (OOS) evaluation. However, in some applications, there may be gains from
using an alternative loss function for estimation, see Hansen and Dumitrescu (2022).
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We see that the end-of-sample risk can be decomposed into three components. The
component R1T is related to the future risk, which has nothing to do with parameter esti-
mation. We define the regret risk (Hirano and Wright (2017)) when using the parameter
estimates θ̂K,b,T :

(7) RT(K, b) = ET
(∂ℓT+h(θ1)

∂θ′

)
(θ̂K,b,T –θ1)+

1
2
(θ̂K,b,T –θ1)

′ ET
(∂2ℓT+h(θ1)

∂θ∂θ′

)
(θ̂K,b,T –θ1).

If we further assume that5:
ET
(∂ℓT+h(θ1)

∂θ′

)
= 0,

the regret risk defined in (7) simplifies to (ignoring the constant 1/2):

(8) RT(K, b) = (θ̂K,b,T – θ1)
′ ET

(∂2ℓT+h(θ1)
∂θ∂θ′

)
(θ̂K,b,T – θ1).

Thus, minimizing the end-of-sample risk is equivalent to minimize RT(K, b).

3.1. Selection of the tuning parameter b

Since (3) is a nonparametric estimator, it is well known that the tuning parameter
b is essential in risk reduction (trade-off between reducing bias and variance). We
now introduce our tuning parameter selection procedure. Suppose that the weighting
function K is chosen.Write θ̂K,b,T = θ̂b,T andωT

(
θ1
)
= ∂2ℓT+h(θ1)

∂θ∂θ′ . We consider to choose
b by simply minimizing the regret risk (8) over the choice set IT :

(9) b̂ := argmin
b∈IT

(θ̂b,T – θ1)
′ωT

(
θ1
)
(θ̂b,T – θ1).

Notice that, the cardinality of the set |IT | must shrink to zero as T → ∞, since the
consistency of θ̂b,T requires b→ 0.

We first drive the rate of the optimal tuning parameter implied by (9), which is
characterised in the following theorem:

THEOREM 1. Under Assumptions B1(i), B2, B3 and B4(i), the optimal tuning parameter b̂
obtained by minimizing (9) is of order T–

1
2γ+1 in probability for some 0 < γ ⩽ 1.

Theorem 1 shows that, the optimal tuning parameter b̂ should be equal to cT–
1

2γ+1 ,
as T goes to infinite, for some finite constant 0 < c <∞. This implies that the effective

5For the model considered in Example 1, this implies that E[εT+h|FT ] = 0. so the forecast error is
assumed to be serially uncorrelated.
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number of observations ⌊Tb⌋ is inversely related to γ: when the local time variation in
θ(t/T) is large, the effective number of observations ⌊Tb⌋ should also be lower.

Since θ̂b,T is consistent (LemmaC1), we have θ1
p→ θ1. Following Inoue, Jin, andRossi

(2017), we consider to use the local linear estimator to approximate the unknown θ(1).
The local linear estimate proceeds as follows. Suppose that θ(t/T) is twice continuously
differentiable, a second-order Taylor expansion of θ(t/T) around the (rescaled) end-of-
sample point 1 gives

(10) θ(t/T) ≈ θ + θ′
( t – T
T
)
+
θ
′′

2
( t – T
T
)2,

where θ = θ(1), θ′ = θ(1)(1) and θ
′′ = θ(2)(c), where c lies between 1 and t/T. The local

linear estimator is defined by the minimizer of

(11) min
(θ,θ′)∈Θ×Θ′

1
Tb̃

T∑
t=1

k̃tTℓt
(
θ + θ′(t/T – 1)

)
,

where the weights k̃tT = K̃
(
t–T
Tb̃

)
are computed with a tuning parameter b̃ such that

b̃→ 0 and Tb̃→ ∞ as T → ∞.
Let θ̃T be the collection of the first k × 1 elements of the minimizer of (11), we then

replace the unknowns in (9) with the local linear estimator θ̃T , which leads to a feasible
selection criteria:

(12) b̂ := argmin
b∈IT

(θ̂b,T – θ̃T)
′ωT

(
θ̃T
)
(θ̂b,T – θ̃T).

The asymptotic optimality of the feasible selection procedure (12) is formally stated
in the next theorem.

THEOREM 2. Under Assumptions B1-B5, choosing b̂ by (12) is asymptotically optimal in the
sense that

(θ̂b,T – θ̃T)
′ωT

(
θ̃T
)
(θ̂b,T – θ̃T) ≍ inf

b∈IT
(θ̂b,T – θ1)

′ωT
(
θ1
)
(θ̂b,T – θ1)

where θ̃T is the local linear estimator from (11) with tuning parameter b̃.

Theorem 2 provides an extension to the ones in Inoue, Jin, and Rossi (2017) by show-
ing that the asymptotic optimality holds for a generic weighting function when using (3)
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and a general loss function for forecast evaluation. The asymptotic optimality implies
that b̂ chosen from (12) yields the same forecasts obtained from the true optimal tuning
parameter by minimizing the infeasible objective function in (9). The key to establish
this result is to use the fact that the asymptotic bias from local linear estimator vanishes
at a faster rate than local estimator in (3). As in Assumption A5, the requirements for
two tuning parameters involved: b and b̃ are rather intuitive. We could first let Tb̃5 → 0
to obtain the best possible convergence rate for θ̃T . Then, the remaining conditions
hold when b goes to zero at a faster rate than b̃.

REMARK 1. The condition for θ(t/T) imposed on Theorem 2 is stronger than Theorem 1 since
it requires that θ(t/T) is twice continuously differentiable. However, this condition is not
that restrictive as it covers particular the ones considered in Giraitis, Kapetanios, and Yates
(2014) and Dendramis, Giraitis, and Kapetanios (2021), where (3) is used to estimate a path
of the stochastic time-varying coefficient. To see this, suppose that θ(t/T) is a realization of
a bounded random walk process: 1√

T
ξt, where ∆ξt = vt

i.i.d.
∼ (0, 1). Simple algebra gives

θ(t/T) =
√

t
T
1√
t
ξt. We know that 1√

t
ξt = O p(1), this implies that θ(t/T) = Ct

√
t
T , where Ct is

a positive bounded constant.

3.2. Implications on the choice of K

Another input forecaster has to choose is the weighting function K. Consider the fol-
lowing three candidate choices of K(u):

(13) K1(u) = 1{–1<u<0}, K2(u) =
2√
2π

exp
(
–
u2

2
)
1{u<0}, K3(u) =

3
2
(1 – u2)1{–1<u<0}.

K1(u) leads to a rolling window estimator with window size ⌊Tb⌋. K2(u) imposes an
exponential-type downweighting scheme and K3(u) implies a hyperbolic type down-
weighting scheme. Although K1(u) used to dominate in the applied work, there has
been a growing interest in using other weighting functions. For instance, K2(u) has
been used in macroeconomic forecasting context (Kapetanios, Marcellino, and Venditti
(2019) and Dendramis, Kapetanios, and Marcellino (2020)). K3(u) is recommended in
equity premium forecasts as in Farmer, Schmidt, and Timmermann (2022). A graphical
illustration of the weighting functions in (13) is provided in Figure 1. ForK1(u) andK3(u),
the tuning parameter b determines the number of observation used in (3). For K2(u), b
determines how fast the weights decay.

We shall discuss the choice of weighting function based on the limiting behavior of
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the regret risk RT(K, b). Since RT(K, b) is related to θ̂K,b,T – θ1, in Lemma C1, we show
that

θ̂K,b,T – θ1 = –H
–1
1,T(θ1)

(
S1,T + B2,T

)
,

where

H1,T(θ1) =
1
Tb

T∑
t=1

ktT
∂2ℓt

(
θ1
)

∂θ∂θ′
, S1,T =

1
Tb

T∑
t=1

ktT
∂ℓt(θ(t/T))

∂θ
, B2,T =

1
Tb

T∑
t=1

ktT
∂2ℓt(θ1)
∂θ∂θ′

(
θ1–θ(t/T)

)
,

and θ1 lies between θ̂K,b,T and θ1. θ̂K,b,T – θ1 can be decomposed into a variance term
H–1T (θ1)ST and a bias term H–1T (θ1)BT . Thus, the limiting behavior shall be determined
by whether the variance term or the bias term dominates. This is formally stated in the
next theorem.

THEOREM 3. Suppose that Assumptions B1(i), B2, B3, B4(i) hold with b→ 0 and Tb→ ∞.
Then, it holds that

(i) If T1/2b1/2+γ → 0, we have

Tb · RT(K, b)
d−→ ϕ0,KΣ

1/2
1 Z′ωT

(
θ1
)
ZΣ1/21 ,

where ϕ0,K =
∫
C K

2(u)du, Z ∼ N(0, Ik) and Σ1 is defined as in Lemma C1;

(ii) If T1/2b1/2+γ → ∞, we have

b–2γ · RT(K, b)
p−→ µ2γ,KC

′ωT
(
θ1
)
C,

where µγ,K =
∫
uγK(u)du and C = (c1, · · · , ck)

′ is a collection of Hölder constant given
in Assumption B1(i);

(iii) If T1/2b1/2 ≍ b–γ, we have

Tb ·
(
RT(K, b) + b2γµ2γ,KC

′ωT
(
θ1
)
C
)

d−→ ϕ0,KΣ
1/2
1 Z′ωT

(
θ1
)
ZΣ1/21 ,

where µγ,K, C and ϕ0,K are defined as in (i) and (ii).

The limiting behavior of regret risk reflects the usual bias-variance trade-off. Con-
sider first when T1/2b1/2+γ → 0. In this case, the bias introduced by (3) vanishes asymp-
totically. The rescaled regret risk converges in distribution to a randomvariable centered
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at 06. As estimation variance dominates andϕ0,K affects it, we clearly prefer a weighting
function which has smallest ϕ0,K. For the weighting functions considered in (13), we
have ϕ0,K1 = 1, ϕ0,K2 ≈ 0.5642 and ϕ0,K3 = 1.2. In this case, there is a clear winner. K2(u)
is preferred: all data should be used and downweighted.

If T1/2b1/2+γ → ∞, estimation bias from (3) dominates and regret risk converges to a
non-stochastic term which is not 0. Since we do not know γ, bmay be set improperly so
we are in case (ii) described in Theorem 3. In this case, µγ,K =

∫
uγK(u)du plays a role

so we clearly want to choose a weighting function which has smallest µγ,K. Consider
the case when γ = 1. We have µ21,K1 = 0.25, µ

2
1,K2 ≈ 0.637 and µ21,K3 = 0.141. Then, we

may expect that, if the bias term dominates, K3(u) would be preferred: only recent
data should be used and downweighted. In the third case, (Tb)1/2 and b–γ diverge at the
same rate, the rescaled regret risk converges in distribution, but estimation bias is still
present. This implies that both ϕ0,K and µγ,K matter.

REMARK 2. Using a similar expansion as in (8), Oh and Patton (2021) analyze the OOS forecast
accuracy from both the local and non-local estimator. They argue that, (8) is dominated by the
estimation error in the local estimator, and b determines the usual bias-variance tradeoff. Yet,
the analysis above show that under certain condition on b, (8) is asymptotically dominated by
the estimation variance in the local estimator.

Theorem 3 indicates that choice of weighting function is related to γ. In addition,
application of Theorem 1 also requires the knowledge of γ. However, γ is unknown in
practice. In both Monte Carlo study and empirical applications, we fix γ = 1 and thus
b = cT–1/3. c is selected by minimizing the regret risk (12). This implies that we may
fall into cases (ii) and (iii) in Theorem 3, but the regret risk converges to a non-zero
constant at the slowest possible rate. As effective number of observations are of order
T2/3, a relatively larger ⌊Tb⌋ would also be useful to reduce the finite sample variability
of the regret risk.

4. Monte Carlo experiments

We now turn to the Monte Carlo experiments of our analysis in section 2. The DGPs are
based on a bivariate VAR(1) as in Pesaran and Timmermann (2007) and Inoue, Jin, and

6Notice that when ωT
(
θ1
)
is idempotent matrix, the asymptotic distribution has a more elegant

expression, since Z′ωT
(
θ1
)
Z ∼ χ2, where the degree of freedom is given by trace

(
ωT
(
θ1
))
.
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Rossi (2017):

(14)

[
yt+1
xt+1

]
=

[
at bt
0 0.9

][
yt
xt

]
+

[
ε
y
t+1
εxt+1

]
,

where the error terms (ε yt+1, ε
x
t+1)

′ are generated from N(0, I2).
In DGP 1, the parameters are constant over time: at = 0.9 and bt = 1 for all t. In DGPs

2-4, we have a one-time local break in these two parameters: at = 0.9 – 1
T0.21(t ⩾ πT + 1),

bt = 1 + 1
T0.21(t ⩾ πT + 1), where π = 0.25, 0.5, 0.75, respectively. DGPs 5-12 use the

smooth time-varying parameters (Assumption A4(ii) is satisfied). In DGP 5, we set
at = 0.9 – 0.4(t/T) and bt = 1 + (t/T). In DGP 6, we set at = 0.9 – 0.4(t/T)2 and bt = 1 + (t/T)2.
In DGP 7, we set at = 0.9 – 0.4 exp(–3.5t/T) and bt = 1 + exp(–16(t/T – 0.5)2). In DGPs
8-12, we consider various degree of smoothness in time-varying parameters. We first
generate vit = (1 – L)1–dϵit, where ϵit

i.i.d.
∼ N(0, 1/(1002)). Then, we generate ξit from the

random walk model: ∆ξit = vit. Finally, we set at = 0.95
ξ1t

max1⩽ j⩽t |ξ1 j |
and bt = ξ2t/

√
T.

We consider d = 0.51, 0.75, 1, 1.25, 1.49 for DGPs 7-11 respectively, which correspond to
the setting where γ = 0.01, 0.25, 0.5, 0.75, 0.99.

We consider the following predictive regression model:

yt+1 = X
′
tθt + εt+1,

where Xt = ( yt, xt)′ and θt = (at, bt)′. The model parameters are estimated by the local
least square (LS):

θ̂K,b,T =
( T–1∑
t=1

ktTXtX′
t

)–1( T–1∑
t=1

ktTXt yt+1
)
,

where the weights ktT = K
(
t–T
Tb

)
are computed from a weighting function K(u) with

tuning parameter b. We consider three different choices of weighting functions as
discussed in section 2.2:

(15) K1(u) = 1{–1<u<0}, K2(u) =
2√
2π

exp
(
–
u2

2
)
1{u<0}, K3(u) =

3
2
(1 – u2)1{–1<u<0}.

Of course, when ktT = 1 for all t, we are back to the non-local full sample LS estimates.
The forecasts are evaluated by the mean squared forecast error (MSFE) loss, and the
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regret risk becomes

(16) R(K, b) = (θ̂K,b,T – θ1)
′
(
XTX′

T

)
(θ̂K,b,T – θ1).

Notice that, in this case, Assumption A1(ii) implies that the forecast error is a M.D.S.:
E[εt+1|Ft] = 0. The true parameters θ(1) in R(K, b) are approximated by the local linear
estimator, which are the first k × 1 elements of the following:

(θ̃′T , θ̃
′(1)
T )′ =

( T–1∑
t=1

k̃tTZtZ′t
)–1( T–1∑

t=1
k̃tTZt yt+1

)
,

where Zt =
[
X′
t,X′

t(
t–T
T )
]′, k̃tT = K( t–TTb̃ ) are computed from a weighting function K(u)

with tuning parameter b̃.We use the sameweighting function used for θ̂K,b,T to compute
θ̃T and b̃ is selected by the rule-of-thumb method: b̃ = 1.06T–1/5. For b, we set b = cT–1/3

and select c by minimizing R(K, b) using a course grid of width 0.05 from 1 to 5.
We first evaluate the performance of the local LS estimator under various types

of time variation as in DGPs 2-12. The number of Monte Carlo simulations is set to
5,000 and four different sample sizes are considered T = 100, 200, 300, 400. Table 1
reports the average of mean absolute deviations (MADs): 1

M ∑
M
m=1|θ̂

m
K,b,T – θ

m
1 | for both

a1 (upper panel) and b1 (bottom panel). For each DGP, we consider all the weighting
functions in (15) and the tuning parameter b is selected by minimizing (16). Overall, the
performances are quite satisfactory as MADs decrease as sample size increases. It is
clear from DGPs 8-12 that MADs also decrease as γ increases, indicating that estimation
gets harder when changes are more frequent. Finally, in terms of choices of weighting
function, we see that using exponential type weighting function (K2(u)) is generally
preferred for b1, but in terms of a1 parabolic type weighting function (K3(u)) is better
for DGPs 4 and 9-12.

We then evaluate the performance of the out-of-sample prediction of yT+1 over 5000
Monte Carlo simulations. The benchmark forecasts are generated from ŷT+1|T = X′

T θ̂T ,
where θ̂T is obtained from non-local LS estimator (when all the weights are equal to 1:
ktT = 1). For comparison, we also consider rolling window forecasts with rolling window
size equal to 40. Table 2 report the ratios of the RMSFEs (square root of MSFEs) relative
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to the benchmark forecasts: √
∑
M
m=1( y

m
T+1 – ŷ

m
T+1|T)2√

∑
M
m=1( y

m
T+1 – ỹ

m
T+1|T)

2
,

where ỹmT+1|T is the benchmark forecast and ŷmT+1|T are the forecasts from using local
estimators. If the ratio of RMSFEs is less than 1, the forecasts generated from local
estimator is more accurate than the ones from non-local estimator. Entries shaded in
gray indicate the best performing model.

Table 2 summarizes the results. First, all of the forecasts generated from local
estimator are more accurate than the ones from non-local estimator when there is time
variation in model parameters. One exception is DGP 8 when T = 100. In this case, the
time variation is too rough and estimationmay not be precise when sample size is small.
Of course, when the parameters are constant over time (DGP 1), the non-local estimator
is more efficient and forecasts are more accurate. Interesting, for DGP4, when the break
occurs close to the time when forecasts are made, either using fixed rolling forecasts or
optimal selection with K3(u) is the best, indicating that not using all data is useful. This
is also true for DGP3 when sample size is small (T = 100). When the time variation is a
quadratic function of u = t/T, using K1(u) is always the best. For all the other cases (34
out of 44), using exponential type weighting function (K2(u)) is better than others, which
implies that it is more likely that using all data and downweighting them is preferred.

5. Empirical applications

We present four empirical applications. First, we consider forecasting inflation in the
United States (U.S.) and Canada. Unobserved componentmodel with stochastic volatility
(UCSV) originally proposed by Stock and Watson (2007) is a well-known benchmark for
forecasting U.S. inflation. We would like to investigate whether local estimation of a
simple distributed lag model would lead to accuracy gains compared to this benchmark.
In addition, as the UCSV model is proposed for U.S. data, we also want to examine
whether same conclusion holds for Canada.

Our second application considers forecasting macroeconomic shocks using system-
atic risk measures. Recent Covid-19 crisis has shifted interests to the tails of macroeco-
nomic variables rather than themeans (Carriero, Clark, andMarcellino (2022) and Clark
et al. (2023)). We use a predictive quantile regression model to forecast how specific
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features of the macroeconomic shock distribution respond to systemic risk. Compared
to Giglio, Kelly, and Pruitt (2016), we investigate not only the left quantiles of industrial
production shock, but also inflation shocks in both left and right quantiles. In addition,
we also examine whether using local estimator could improve tail forecast accuracy.

Our third application focuses on forecasting real house price changes for five indus-
trialized countries: U.S., Canada, France, Germany and Australia. Ghysels et al. (2013)
use several model specifications to examine in-sample predictability of real estate price
for U.S., but out-of-sample (OOS) forecasting is only conducted for real estate investment
trusts (REITs). From a macroeconomic perspective, residential real estate sector is a
key driver of economic growth and plays a dominant role in business cycle variation
(Leamer (2007)). Thus, it is of great interests to investigate the OOS forecasting perfor-
mance for real house price changes. In addition, estimation method is also different
from the previous two applications, as nonlinear models are used.

We consider bond return predictability in our fourth application. Treasury bonds
play an important role in many investors’ portfolios. Recent literature (Gargano, Pet-
tenuzzo, and Timmermann (2019) and Borup et al. (2023)) has documented evidence
of time variation in OOS bond return predictability for one-month (nonoverlapping)
return data. We would like to examine there is time variation in 12-month overlapping
return predictability. Overlapping return data have been used in many existing studies
such as Cochrane and Piazzesi (2005) and Liu and Wu (2021). In addition, as explained
in Bauer and Hamilton (2018), overlapping data may introduce temporal dependence in
the forecasting errors. Assumption A1(iii) may fail and we would like to see how our
methods perform in this case.

Across these applications, for the local estimation method, we consider three differ-
ent choices of weighting functions as in (15):

K1(u) = 1{–1<u<0}, K2(u) =
2√
2π

exp
(
–
u2

2
)
1{u<0}, K3(u) =

3
2
(1 – u2)1{–1<u<0}.

It is again worth mentioning that all data are used when K2(u) is used, but certain
data points are discarded when either K1(u) and K3(u) is used. The tuning parameter
b controls the rate of how fast the weights decay for K2(u). For K1(u) and K3(u), b
determines howmany observations are used for local estimation.

Except for the second application, the forecast evaluations are all based on the MSE
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loss function. Then, the regret loss becomes

(17) R(K, b) = (θ̂K,b,T – θ1)
′
(
XT(θ1)X′

T(θ1)
)
(θ̂K,b,T – θ1).

Note that the weighting matrix XT(θ1)X′
T(θ1) may depend on the parameters. Since

quantile regressionmodel is used in the second application, the forecast evaluations are
based on the check loss function ℓτt (θ) = εt+1(θ)(τ–1{εt+1(θ)<0}), where εt+1(θ) = yt+1–X′

tθτ

and τ is the quantile of interest. Then, the regret loss becomes

(18) R(K, b) = (θ̂K,b,T – θ1)
′ ET

(∂ℓ2T+1(θ1)
∂θ∂θ′

)
(θ̂K,b,T – θ1).

As the check loss function is not differentiable, we consider the smoothed quantile
regression framework in Fernandes, Guerre, and Horta (2021). We use the in-sample
counterpart to approximate ET

(
∂ℓ2t+1(θ1)
∂θ∂θ′

)
. More details are provided in Section 5.2.

Once the weighting function is chosen, we set b = cT–1/3 and use ĉ to obtain our
final forecast by minimizing R(K, b) as defined in (17). When data are sampled quarterly
(Sec. 5.1 and Sec. 5.3), we let c range from 1 to 5 with a course grid of width 0.05. When
data is are sampled monthly (Sec. 5.2 and Sec. 5.4), we let c range from 1 to 7 with a
course grid of width 0.1. We replace the unknown θ1 with the corresponding local linear
estimator as in (11). We use the same weighting function for local linear estimator and
use a rule-of-thumb method for b̃ by setting b̃ = 1.06T–1/5.

Apart from the local estimator using weighting functions in (15) with optimal tuning
parameter selection, we also consider two alternative estimators. The first one is the
non-local estimator when all the weights in (3) are set to 1, so the parameter instability is
completely ignored. The second one is the standard rolling window estimator with fixed
window size. Following Stock and Watson (2003), when data is sampled quarterly, the
window size is set to 40 (10 years of quarterly data). When data is monthly, as common
in finance applications (Farmer, Schmidt, and Timmermann (2022)), the window size is
set to 60 (5 years of monthly data).

The overall forecasting performance are presented in Tables 3-11. The benchmark
forecasts are different across applications and are stated in the following subsections.
The entries related to the benchmark forecasts are the losses in levels. For all other
entries, they are the ratios of losses relative to the benchmark forecasts. Values below
1 indicate that the corresponding specification performs better than the benchmark.
Entries shaded in light cran are the ones perform better than the benchmark in each
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specification and gray shaded entries are the best performing specification.
Finally, to provide a rough gauge of whether differences in accuracy are significantly

different, we apply the Diebold andMariano (1995) (DM) test for equal forecast accuracy
with fixed smoothing asymptotics as in Coroneo and Iacone (2020) , which is shown
to deliver predictive accuracy tests that are correctly sized even when the number of
out-of-sample observations are small.

5.1. Forecasting inflation

The target variable is the annualized inflation rate: yt = 400 ln
(
Qt/Qt–1

)
, where Qt is the

implicit price deflator of the gross domestic product (GDP). The benchmark forecasts
are obtained from the UCSV model:

yt = τt + ε
y
t , ε

y
t ∼ N(0, eht ),

τt = τt–1 + ετt , ετt ∼ N(0, egt ),

ht = ht–1 + εht , εht ∼ N(0,ω2
h),

gt = gt–1 + ε
g
t , ε

g
t ∼ N(0,ω2

g),

with initial conditions τ0, h0 and g0 as unknown parameters. We assume Normal priors
for all model parameters:ωh ∼ N(0, 0.22),ωg ∼ N(0, 0.22), h0 ∼ N(0, 10), g0 ∼ N(0, 10),
and τ0 ∼ N(0, 10). The model is estimated using Bayesian methods in non-centered
parameterization and then transform back to the centered parameterization to perform
predictive simulation. Estimation details can be found in Appendix B in Chan (2018).

Alternatives forecasts are obtained from ARDL( p, q) model:

(19) yt+1 = c +
p–1∑
ℓ=0

ρℓ yt–ℓ +
q–1∑
ℓ=0

βℓXt–ℓ + ut+1,

where Xt is a scalar predictor. We set p = 4 when non-local estimator is used and p = 1
for local estimator (fewer lags when parameter instability is taken into consideration).
q is set to 1 in all cases.

The data set is collected at a quarterly frequency, with a sample period of 1962Q3-
2023Q1. The choices of predictors follow closely from Inoue, Jin, and Rossi (2017) and
consist of asset prices, measures of real economy activity, price indices and monetary
measures. For U.S., both the target variables and predictors are taken from Fred-QD
(McCracken, Ng et al. (2021)). The data for Canada are taken from FRED and Stevanovic
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et al. (2021). Tables E1-E2 lists mnemonics (in the associated database), data description
and data transformation for all the predictors. The initial estimation sample runs from
1962Q3 to 1984Q4 and the first available forecast is for 1985Q1.

To avoid the complication due to Covid-19, we first consider results from the evalua-
tion period 1985Q1-2019Q4. Tables 3-4 report the overall forecasting performance. Let
us start by commenting the results obtained for U.S. Overall, UCSV is indeed a tough
benchmark as there are many cases when UCSV performs better than the alternative
specifications. However, there are also some cases when local estimator with optimal
tuning parameter selection improves forecast accuracy compared to the benchmark.
The best result is achieved when the changes of employment numbers (CE16OV) is used
as a predictor. It already provides benefits when CE16OV is added to an AR(4) model,
and using K2(u) with optimal tuning parameter selection gives additional benefits. K2(u)
is also useful when stock return (S&P 500), volatility (VXOCLSx), some measures of real
economic activity (consumption, investment and industrial production) and monetary
measures are used.

Moving to the results obtained for Canada, some different patterns clearly emerge.
Using K2(u) with optimal tuning parameter selection always improves forecast accuracy
compared to the benchmark UCSVmodel. The best result is archived when stock return
(TSX_CLO) is used as the predictor. Interesting, when using non-local estimator for the
ARDL(1,1) model, they are always outperformed by the benchmark. This clearly shows
that ignoring issues related to parameter instability can be detrimental to forecast
accuracy.

Interestingly, results from U.S. show that changes of employment is a useful predic-
tor, indicating the traditional backward looking Phillips curve type of forecasting model
is useful. However, the results do not hold when we use the unemployment directly
as the predictor. To get a better understanding on the source of gains, we evaluate
the models’ forecasting performance over time by plotting the associated cumulative
sum of MSFEs over time for these two predictors in Figure 2. The solid line shows the
results obtained from using non-local estimator and the dashed line shows the results
from local estimator with optimal tuning parameter selection when K2(u) is used as
the weighting function. When changes of employment is used, the gains from using
local estimator is initially negative. Non-local estimator performs better than the local
estimator before 2010, but it is outperformed by the local estimator afterwards. When
unemployment rate is used, using non-local estimator improves forecast accuracy com-
pared to the UCSV benchmark during the period 1990-1996. However, the gains become
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negative afterwards. Using local estimator is not that useful as the gains are always
negative.

Another interesting findings are when monthly inflation (changes of CPI) is used, it
performs better for Canada but not for U.S. We again plot the associated cumulative
sum of MSFEs over time in Figure 3. The solid line shows the results obtained from
using non-local estimator and the dashed line shows the results from local estimator
with optimal tuning parameter selection when K2(u) is used as the weighting function.
For U.S., even though the gains remain negative for the entire evaluation period, the
forecasting performances are relatively stable over time. However, the performances
for Canada changemarked after 2010. The gains from using local estimatormostly come
from that period. When non-local estimator is used, gains are positive from 2004 to
2008, but quickly becomes negative during 2009-2010.

In Appendix F, we report the results from the evaluation period 2020Q1-2023Q1.
Tables F1-F2 presents the results for U.S. and Canada, respectively. Overall, as clearly
shown in the first row of each table, RMSFEs from UCSVmodel are larger compared
to the pre-Covid, which implies that it is difficult to get precise inflation forecasts in
this turbulence time. For U.S., non-local estimator works better in this period, and in
general, it performs better than the benchmark model. There are still cases in which
local estimator with optimal tuning parameter selection works better, particularly when
unemployment rate is used as the predictor. However, they are generally outperformed
by the AR(4) model, except when term spreads are used as the predictor. For Canada,
K2(u) with optimal tuning parameter selection still improves forecast accuracy when
predictors are from the category of asset prices and price indices. The best results are
obtained when unemployment rate is used as the predictor, indicating that backward
looking Phillips curve forecasting model still works relatively well.

5.2. Forecasting growth and inflation shocks

Let yt+1 be the macroeconomic shock whose conditional quantile we wish to forecast
based on systemic risk measures. The τth conditional quantile of yt+1 is affine function
of observable xt:

(20) Qτ( yt+1|xt) = ατ + βτxt,

where xt is a systematic risk measure. Qτ( yt+1|xt) := inf { y : F( y|xt) ⩾ τ}, F(·|xt) is the
conditional c.d.f. of Yt+1 given Xt = xt, with density f (·|xt). As in Koenker and Bassett
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(1978), quantile regression estimator θτ = (ατ,βτ)′ minimizes the sample analog of the
check loss based on the empirical distribution, namely,

(21) LT(θ; τ) =
1
T

T∑
t=2

ℓτt (θ),

where ℓτt (θ) = εt+1(θ)[τ – 1εt+1(θ)<0] and εt+1(θ) = yt+1 – ατ – βτxt. The objective function
for the local estimator in (3) and local linear estimator in (11) can be similarly defined.

As the check loss is not differentiable, expansion like (5) cannot be directly used. We
follow Fernandes, Guerre, and Horta (2021) to apply kernel smoothing to the empirical
objective function7 in (21), yielding

(22) L̃T(θ; τ) =
1
T

T∑
t=2

ℓ̃τt (θ),

where ℓ̃τt (θ) =
(
ℓτ(θ)∗K∗

b∗
)(
εt+1(θ)

)
=
∫∞
–∞ ℓτ(v; θ)K∗

h(v–εt+1(θ))dv and ∗ is the convolution
operator. K∗

b∗(·) is another weighting function with a tuning parameter b
∗ > 0. It can be

shown that the second order derivative of (22) with respect to θ is

(23) L̃(2)T (θ; τ) =
1
T

T∑
t=2

XtX′
tK

∗
b∗(–εt+1(θ)),

where Xt = [1 xt]′. The local version of (23) can be defined accordingly, which will be
used to approximate the weighting matrix ET

(
∂ℓ2T+1(θ1)
∂θ∂θ′

)
defined in (18), which leads to

feasible regret loss:

R(K, b) = (θ̂K,b,T – θ1)
′ L̃(2)T (θ; τ) (θ̂K,b,T – θ1).

What remains is to choose K∗ and b∗. We use an exponential-type weighting function

K∗(u) = 1√
2π
e–

u2
2 and set b∗ = {(2 + logT)/T}2/5 (He et al. (2021)).

We consider both growth and inflation shocks for the United States. As in Giglio,
Kelly, and Pruitt (2016), growth shocks are measured as the residuals from an AR( p)
regressionbasedon thepercentage changes of industrial production (IP) index. Inflation
shocks are obtained similarly as the residuals from an AR( p) regression based on the

7We use the kernel smoothing objective function to obtain the implementable regret loss in this
application. Estimation is still basedon the empirical distribution as in (21), aswefind that it is numerically
more stable and delivers better forecasting performance.
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percentage changes of consumer price index (CPI). Both IP and CPI data are taken from
FRED. The systematic risk measures we consider include CatFin (Allen, Bali, and Tang
(2012)), default spread, TED spread, term spread, slope factor of the yield curve, VIX
and stock return. The details of variable descriptions and data sources are provided in
Table E3. Due to the availability of CatFin, our sample period starts in 1973M1 and ends
in 2022M12. The initial estimation sample runs from 1973M1 to 1989M12 and the first
available forecast is for 1990M1.

As inGiglio, Kelly, and Pruitt (2016), themacroeconomic shock series are constructed
carefully to preserve the out-of-sample nature. This means that the forecast of amacroe-
conomic shock at time T + 1 is constructed using only information from the estimation
sample up to time T. We fit IP growth and inflation series using an AR(13) model and
estimate it using Bayesian methods with natural conjugate prior. The forecast residual
at time T + 1 is constructed based on these estimates. The benchmark forecasts are
based on the historical unconditional quantile. We consider the left tails (5th, 10th and
15th percentiles) for IP growth shock and both left tails (5th, 10th and 15th percentiles)
and right tails (85th, 90th and 95th percentiles) for inflation shocks.

Table 5 reports the results for IP growth shocks forecasts. The only systemic risk
measure achieves gains across all three percentiles and weighting functions are TED
spread. Using local estimator provides additional benefits. K2(u) delivers best results for
5th and 10th percentiles but K1(u) performs better in the 15th percentile. Most systemic
risk measures improve forecast accuracy at the 5th percentile and generally performs
better than the local estimator, but gains frommeasures such as term spread and slope
factor get lost at the 10th and 15th percentiles. Default spread with non-local estimator is
the best at 15th percentile, but performance from K1(u) with tuning parameter selection
is quite close.

Table 6 reports the results for inflation shocks forecasts. Let us start by commenting
results from the left tail. First, except for term spread at 5th percentile, all systemic
risk measures with tuning parameter selection deliver benefits in all cases. Second,
TED spread with fixed rolling window forecasts is the best at 5th percentile, but stock
return with K2(u) is the best at both 10th and 15th percentiles. Third, TED spread is
very useful as it always improves forecast accuracy no matter what types of weighing
function is used. Moving to the right tail, we see that K2(u) is still useful at both 5th and
10th percentile as it is generally beneficial for all systemic risk measures. TED spread is
again very helpful at these two percentiles and local estimator performs better than the
non-local ones. Results are slight different at the 15th percentile, but local estimator
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still provides gains if Catfin or Term spread is used.

5.3. Forecasting house prices changes

Let yt = 100 ln
(
Pt/Pt–1

)
be the growth rate of real house prices (Pt). Following Ghysels

et al. (2013), our baseline specifications involve predictability based on both serial
correlation (using lag) and valuation ratio (using price-to-rent ratio):

yt+1 = α + β yt + εt+1,(24)

yt+1 = α + βh pt + εt+1,(25)

where h pt = ln(Ht) – ln(Pt), Ht is the net of all operating expenses of a property and Pt
denotes its current price.

Since there is ample evidence that economic variables are associated with future
house prices variations (Campbell et al. (2009)), we would like to know which vari-
able would be useful to improve forecast accuracy, which lead to the following model
specification:

yt+1 = α + β yt + γXt + εt+1,(26)

yt+1 = α + βh pt + γXt + εt+1.(27)

Finally, as economic variables are often available at a higher frequency than yt and
h pt, we also consider the following mixed data sampling (MIDAS) regression model
specification:

yt+1 = α + β1 yt + β2B(L
1/m; δ)x(m)t + εt+1,(28)

yt+1 = α + β1h pt + β2B(L
1/m; δ)x(m)t + εt+1,(29)

where B(L1/m; δ) = ∑
K
k=1 b(k; δ)L

(k–1)/m, Ls/mx(m)t = x(m)t–s/m and B(1; δ) = ∑
K
k=1 b(k; δ) = 1.

Here t indexes the basic time unit (quarters, in our case), m is the higher sampling
frequency (m = 3 when x is monthly and y is quarterly), and, as shown, L1/m operates at
this higher frequency. As explained in Andreou, Ghysels, and Kourtellos (2010), when
Xt is available at a higher frequency, using higher frequency data directly may be more
efficient. Thus, it is of great interests to examine whether MIDAS specification helps to
improve forecasting performance.

The data for Pt and h pt are taken from the International Housing Observatory
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Database. This is a publicly available database which covers a number of countries. The
detailed source of description and methodology can be found in Mack, Martínez-García
et al. (2011). Due to the data availability of h pt, the countries we consider include 4
of the G7 countries (United States, Canada, France and Germany) as well as Australia.
Economic variables we consider include stock return, treasury-bill rate, term spread
(measured by the difference between long term, government bond yield and treasury-
bill rate), inflation (measured by changes of CPI) and growth (measured by changes of
industrial production), which are the ones considered in Ghysels et al. (2013)8. Table E4
provides data sources, detailed descriptions and data transformations for the predictors.
Our sample starts from 1975Q3 and ends at 2022Q4 (1975M7 – 2022M12 for monthly
predictors). The initial estimation sample runs from 1975Q3 to 1995Q4 and the first
available forecast is for 1996Q1.

Model parameters in specifications (24)-(25) and (26)-(27) can be estimated by LS
method. For theMIDAS specification (28)-(29), since yt andh pt are available at quarterly
frequency and economic variable is sampled at monthly frequency, we havem = 3. For
the parametrization of b(k; δ). We use Beta polynomials, which is based on the Beta
probability density function which involves two parameters δ = (δ1, δ2)′:

b(k; δ1, δ2) =
f ( kK ; δ1, δ2)

∑
K
k=1 f (

k
K ; δ1, δ2)

,

where f (x; δ1, δ2) =
xδ1–1(1–x)δ2–1Γ (δ1+δ2)

Γ (δ1)Γ (δ2)
and Γ (δ1) =

∫∞
0 e–xxδ1–1dx. Following Ghysels

and Qian (2019), we set δ1 = 1 and restrict δ2 to be larger than 1 to ensure a downward
sloping weighting scheme. Then, the model parameters are estimated by nonlinear LS
method as in Andreou, Ghysels, and Kourtellos (2010). Finally, for the number of high
frequency lags, we set K = 3.

Table 7 reports the overall forecasting performance based on the specification with
lag ((24), (26) and (28)). Table 8 reports the overall forecasting performance based on the
specification with valuation ratio ((25), (27) and (29)). The upper panel in each country
presents the results obtained from (26) and the bottom panel is for the results obtained
fromMIDAS specification (28).

Let us start by commenting the results obtained from Table 7. There are several
findings. First, all the alternatives are outperformed by the benchmark in the United

8Sincemonthly CPI and INDPRO are not available in Australia, these two variables are not investigated
with specification (28)-(29).
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States, indicating that the specification with lag is a tough benchmark. This is also true
for France, as there are only two cases in which alternatives perform better. Second,
for Canada, fixed rolling window forecast with specification (26) and treasury bill as a
predictor has the overall best performance. Finally, we see that local estimator with
optimal tuning parameter selection is useful for Germany and Australia. For Germany,
using specification (26) with local estimator (either K1(u) and K3(u)) always improves
compared to the benchmark. K2(u) is a better choice for Australia as it always delivers
gains. Overall, the forecasting performance based on the specification with lag is rather
heterogenous across countries.

Moving to the results in Table 8, some different stories are evident. First, there are
more entries that the numbers are below 1, indicating that local estimators are more
likely to perform better than the non-local benchmark. Second, for all countries, using
MIDAS specification with treasury bill rate always improves forecast accuracy, and in
general not using all data (K1(u) and K3(u)) are better (except Germany). K1(u) also in
general deliver gains compared to the benchmark, but Canada is an exception, except
for the case when treasury bill rate is used as the predictor. Finally, K3(u) is always the
best for United States and France. Overall, the parameter instability is more pervasive
in the specification with valuation ratio, and using MIDAS specification with treasury
bill rate as an additional predictor is preferred.

To provide a better understanding of the source of the gains, we plot the cumulative
sums of MSFEs differences (relative to the benchmark (24) or (25)) over the evaluation
sample. The results from (28)-(29) are in Figure 4 and the results from (26)-(27) are
plotted Figure 5. Based on the findings in Table 8, we only consider the case when
treasury bill rate is used as the predictor and K3(u) is used as the weighting function.
For all countries, the gains in the specification with valuation ratio are generally positive
over the evaluation sample. For Germany, the gains markedly increase afterwards for
the specification with valuation ratio. The gains in the specification with lag are also
present in United States and Canada (with MIDAS) before 2008, but the predictability
gets lost afterwards. Finally, patterns from (26)-(27) are roughly similar. For Canada,
the gains with lag specification are less evident (compared to MIDAS) in the initial
evaluation sample, and the overall better performance is mostly from the COVID period
(after 2019).
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5.4. Bond return predictability

As in Cochrane and Piazzesi (2005), we use the following notation for the (log) yield of
an n-year bond:

y(n)t = –
1
n
p(n)t ,

where p(n)t is the log price of the n-year zero-coupon bond at time t. The holding-period
return of buying an n-year bond at time t and selling it as an (n – 1)-year bond at time
t + 12 is

r(n)t+12 = p(n–1)t+12 – p(n)t .

The excess return is
rx(n)t+12 = r

(n)
t+12 – y

(1)
t ,

where y(1)t is the one-year risk-free rate.
We consider three different specifications to assess whether the excess bond returns

rx(n)t+12 are predictable:

(i) Fama-Bliss (FB) univariate

rx(n)t+12 = α + β f s(n)t + εt+12;

(ii) Cochrane-Piazzesi (CP) univariate

rx(n)t+12 = α + βCPt + εt+12;

(iii) Fama-Bliss and Cochrane-Piazzesi predictors

rx(n)t+12 = α + β1 f s
(n)
t + β2CPt + εt+12.

The Fama-Bliss (FB) forward spreads are given by

f s(n)t = f (n)t – y(1)t = p(n–1)t – p(n)t – y(1)t .

The Cochrane-Piazzesi (CP) factor is constructed as the linear combination of forward
rates:

CPt = γ̂′ f t,

where f t = ( y(1)t , f (2)t , f (3)t , f (4)t , f (5)t )′. The coefficient vector γ̂ is estimated from a
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predictive regression of 14 ∑
5
n=2 rx

(n)
t+12 on [1 f

′
t]′.

We study excess bond return predictability in four bond markets: United States,
Canada, United Kingdom and Japan, which are among the largest bond markets in the
world. The yield data for United States are taken from Liu and Wu (2021). The yield data
for Canada and UK are obtained from Bank of Canada and Bank of England, respectively.
The yield data for Japan are collected fromMinistry of Finance Japan. Since the holding
period we consider is up to 5 years, all yield data are collected up to 5 years maturity.
Due to data availability in different countries, our sample period runs from 1986M1 to
2022M12. A more detailed description of the data is provided in Table E5. The initial
estimation sample runs from 1986M1 to 1999M12 and the first available forecast is for
2000M1. The benchmark forecasts are obtained from the three principal components
(PC) of the global yield curve (by stacking all yield data together from four markets).

Tables 9-11 report the forecasting results for all four bond markets. In each market,
we consider four different maturities: 2 years, 3 years, 4 years and 5 years. The entries
for benchmark PCs of yield curve forecasts are the RMSFEs in levels and all other entries
are ratios of RMSFEs relative to the benchmark. Overall, the results are very promising,
particularly when K3(u) is used with optimal tuning parameter selection, as it provides
sizable and sometimes significant improvement over the benchmark forecasts in all
cases. For Japan, K2(u) leads to better forecasting performance in some cases, but the
results are very close to the ones obtained fromK3(u). Forecasts fromall local estimators
provide gains for Canada, but choice of weighting functions generally matters for other
bond markets. Finally, standard predictive regression by using non-local least square
estimator deteriorates forecasting performance for some markets, particularly for
Canada. This again shows that parameter instability matters and ignoring it may lead
to forecast failure.

6. Conclusion

Parameter instability is pervasive in forecasting models, and local estimator is often
used in the presence of parameter instability. In this paper, we first provide conditions
on the parameter instability to achieve consistency of the local estimator. It is shown
that local estimator can handle a broad range of parameter instability considered in
the literature, which includes local structural break, smooth structural change and
realization of persistent and bounded stochastic process. The consistency rate depends
on the amount of local variation and we obtain faster rate when these variations are
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small.
We then move on to the analysis of OOS forecasting. We focus on the end-of-sample

risk and show that under certain conditions, minimizing the end-of-sample risk is equiv-
alent to minimize the regret risk, which depends on the choices of tuning parameter
and weighting function. We propose method to select tuning parameter by directly min-
imizing the regret risk. This is similar to Inoue, Jin, and Rossi (2017), but we show that
asymptotic optimality holds when a generic weighting function is used for estimation
and a general loss function is used for forecast evaluation. We also provide analyses
on the choice of weighting function, which has been less addressed in the literature.
Our analyses are based on the limiting behavior of the regret risk, which reflects the
usual bias-variance trade-off. When the estimation variance dominates, the criteria
to select the weighting function is quite simple. When estimation bias dominates, the
criteria is more involved as it depends on the property of parameter time variation.
However, it still provides guidance on the implementation of our tuning parameter
selection procedure.

Our theoretical analyses are evaluated through an extensive Monte Carlo study with
linear predictive regression model. We find that local estimation performs well under
various form of parameter instability. Our tuning parameter selection procedure is also
useful in forecasting. In general, using all data and downweighting them is preferred.

We present four empirical applications. Our methods are quite useful and they
generally improves forecast accuracy. Weighting functions do matter in the forecasting
performance. While we find using all data and downweighting them is preferred in the
application of forecasting inflation and growth (inflation) shocks, using only recent data
and downweighting them is more useful in forecasting bond returns and real house
price changes.
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FIGURE 1. Shape of the weighting function with T = 500, b = cT–1/3 with c equal to 1,2.5 and 5.
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FIGURE 2. Cumulative sums (taken over time) of MSFEs differences (MSFEs from UCSV benchmark minus MSFEs from
ARDL(1,1)) for inflation forecasts. The predictors are CE16OV (changes of civilian employment) and UNRATE (unemployment rate).
Non-local: full sample LS estimation from ARDL(1,1); Opt-G: optimal tuning parameter selection with K2(u).
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FIGURE 3. Cumulative sums (taken over time) of MSFEs differences ((MSFEs from UCSV benchmark minus MSFEs from
ARDL(1,1)) for inflation forecasts when changes of CPI is used as the predictor. The left panels shows the results obtained for U.S.
and the right panel shows the results for Canada. Non-local: full sample LS estimation from ARDL(1,1); Opt-G: optimal tuning
parameter selection with K2(u).
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FIGURE 4. Cumulative sums (taken over time) of MSFEs differences fromMIDASmodel (MSFEs from the non-local benchmark
without any economic variable minus MSFEs fromMIDAS model) for real house price growth forecasts. The predictor is 3-month
treasury bill rate and weighting function used is K3(u). The solid line shows results obtained from the specification with lag and
dashed line shows results obtained from the specification with valuation ratio.
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FIGURE 5. Cumulative sums (taken over time) of MSFEs differences from standard predictive regression model (MSFEs from
the non-local benchmark without any economic variable minus MSFEs from standard predictive regression model) for real house
price growth forecasts. The predictor is 3-month treasury bill rate and weighting function used is K3(u). The solid line shows results
obtained from the specification with lag and dashed line shows results obtained from the specification with valuation ratio.
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TABLE 1. Small sample properties of the local estimator: Average MADs

DGP Opt-R Opt-G Opt-E Opt-R Opt-G Opt-E Opt-R Opt-G Opt-E Opt-R Opt-G Opt-E

a1

T = 100 T = 200 T = 300 T = 400

One-time structural break

2 0.079 0.049 0.077 0.052 0.034 0.046 0.030 0.027 0.034 0.026 0.022 0.029

3 0.090 0.106 0.089 0.064 0.049 0.060 0.051 0.038 0.048 0.041 0.031 0.040

4 0.101 0.259 0.090 0.063 0.199 0.058 0.050 0.161 0.046 0.044 0.134 0.040

Smooth structural change

5 0.052 0.045 0.051 0.040 0.036 0.038 0.033 0.031 0.033 0.030 0.028 0.029

6 0.066 0.076 0.060 0.052 0.062 0.047 0.044 0.054 0.039 0.040 0.049 0.036

7 0.021 0.014 0.023 0.015 0.010 0.016 0.012 0.009 0.013 0.011 0.008 0.012

8 0.279 0.261 0.280 0.251 0.240 0.249 0.238 0.227 0.235 0.223 0.217 0.221

9 0.248 0.234 0.245 0.213 0.209 0.207 0.198 0.193 0.192 0.185 0.184 0.177

10 0.206 0.193 0.202 0.168 0.163 0.163 0.153 0.152 0.146 0.141 0.141 0.134

11 0.165 0.151 0.166 0.128 0.125 0.125 0.114 0.111 0.110 0.103 0.103 0.100

12 0.139 0.129 0.141 0.107 0.101 0.106 0.087 0.088 0.086 0.076 0.077 0.075

b1

T = 100 T = 200 T = 300 T = 400

One-time structural break

2 0.186 0.127 0.186 0.134 0.093 0.126 0.093 0.077 0.103 0.081 0.065 0.089

3 0.204 0.214 0.204 0.157 0.119 0.151 0.131 0.100 0.126 0.111 0.085 0.109

4 0.229 0.424 0.209 0.156 0.372 0.149 0.129 0.323 0.122 0.115 0.275 0.109

Smooth structural change

5 0.170 0.137 0.175 0.133 0.109 0.135 0.112 0.095 0.115 0.101 0.086 0.103

6 0.199 0.197 0.193 0.159 0.161 0.151 0.134 0.140 0.127 0.123 0.128 0.117

7 0.151 0.128 0.150 0.109 0.088 0.106 0.090 0.074 0.088 0.078 0.064 0.076

8 0.092 0.066 0.103 0.068 0.050 0.075 0.058 0.042 0.064 0.050 0.037 0.055

9 0.093 0.067 0.104 0.068 0.049 0.075 0.056 0.041 0.063 0.051 0.037 0.056

10 0.095 0.067 0.106 0.068 0.050 0.076 0.056 0.041 0.063 0.050 0.036 0.055

11 0.096 0.067 0.106 0.069 0.050 0.078 0.059 0.042 0.065 0.051 0.037 0.057

12 0.096 0.068 0.107 0.071 0.052 0.078 0.060 0.046 0.066 0.057 0.043 0.061

Notes: R = 40: rolling window forecast with window size equal to 40; Opt-R: optimal selection with K1(u); Opt-G: optimal selection
with K2(u); Opt-E: optimal selection with K3(u). We set b = cT–1/3 with c ranging from 1 to 5 (width 0.05). The tuning parameter used
to compute θ̃T is set to b̃ = 1.06T–1/5.
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TABLE 2. Forecasting performance from simulated dataset

DGP R = 40 Opt-R Opt-G Opt-E R = 40 Opt-R Opt-G Opt-E R = 40 Opt-R Opt-G Opt-E R = 40 Opt-R Opt-G Opt-E

T = 100 T = 200 T = 300 T = 400

Constant coefficient

1 1.020 1.056 1.019 1.070 1.027 1.035 1.015 1.039 1.033 1.026 1.014 1.032 1.030 1.022 1.009 1.025

One-time structural break

2 0.757 0.791 0.756 0.790 0.775 0.783 0.763 0.784 0.765 0.762 0.751 0.767 0.782 0.776 0.767 0.778

3 0.648 0.685 0.685 0.690 0.671 0.685 0.666 0.687 0.670 0.675 0.661 0.678 0.666 0.664 0.653 0.666

4 0.864 0.636 0.824 0.627 0.605 0.608 0.765 0.610 0.615 0.611 0.737 0.613 0.642 0.634 0.709 0.636

Smooth structural change

5 0.931 0.950 0.928 0.956 0.922 0.927 0.913 0.930 0.921 0.920 0.907 0.923 0.918 0.914 0.904 0.916

6 0.821 0.808 0.812 0.814 0.780 0.780 0.784 0.783 0.763 0.760 0.765 0.761 0.764 0.757 0.760 0.760

7 0.842 0.863 0.835 0.865 0.852 0.862 0.836 0.862 0.834 0.829 0.818 0.834 0.843 0.836 0.825 0.838

8 1.006 1.028 1.003 1.034 1.002 1.004 0.991 1.004 1.012 1.007 0.997 1.013 1.001 0.997 0.992 0.997

9 0.988 0.994 0.981 1.001 0.979 0.980 0.970 0.981 0.976 0.976 0.970 0.977 0.973 0.971 0.967 0.971

10 0.966 0.971 0.956 0.972 0.949 0.953 0.946 0.952 0.949 0.948 0.942 0.949 0.952 0.948 0.944 0.948

11 0.959 0.975 0.952 0.980 0.945 0.951 0.937 0.955 0.919 0.919 0.911 0.920 0.912 0.907 0.905 0.908

12 0.901 0.915 0.896 0.923 0.881 0.885 0.876 0.887 0.875 0.873 0.869 0.875 0.853 0.847 0.844 0.849

Notes: R = 40: rolling window forecast with window size equal to 40; Opt-R: optimal selection with K1(u); Opt-G: optimal selection
with K2(u); Opt-E: optimal selection with K3(u). We set b = cT–1/3 with c ranging from 1 to 5 (width 0.05). The tuning parameter used
to compute θ̃T is set to b̃ = 1.06T–1/5.
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TABLE 3. Forecasting performance for inflation in the United States: 1985Q1-2019Q4

UCSV 0.571

AR(4) 1.048

Non-local R = 40 Opt-R Opt-G Opt-E

Asset prices

FEDFUNDS 1.047 0.992 1.087 1.008 1.109

TB3MS 1.050 0.988 1.089 1.007 1.106

GS10 1.076 1.018 1.103 1.041 1.112

GS10TB3Mx 1.085 1.014 1.062 1.038 1.090

term spread 1.082 1.002 1.070 1.023 1.092

S&P 500 1.097∗ 1.020 0.994 0.984 1.016

VXOCLSx 1.039 1.033 1.016 0.972 0.964

Real economic activity

DPIC96 1.011 0.990 0.987 0.966 1.009

GPDIC1 1.043 1.012 1.006 0.981 1.032

INDPRO 0.973 0.996 0.991 0.971 1.012

CE16OV 0.925 0.983 0.971 0.914 0.949

UNRATE 1.101 1.166 1.097 1.065 1.108

LNS14000026 1.114∗ 1.185 1.104 1.069 1.096

HOUST 1.076 1.038 1.049 1.008 1.063

PERMIT 1.057 1.020 1.028 0.990 1.037

Price indices

CPIAUCSL 1.194∗ 1.155 1.156 1.117 1.263

CPIAPPSL 1.237∗ 1.038 1.027 1.007 1.062

CPIENGSL 1.154∗ 1.102 1.108 1.068 1.184

PPIACO 1.296∗ 1.047 1.014 1.023 1.087

PCECTPI 1.183 1.157 1.131 1.064 1.273

Monetary measures

BOGMBASEREALx 1.209 0.998 1.041 0.993 1.235

M1REAL 1.064 0.995 1.016 1.000 1.051

M2REAL 1.091 1.025 1.031 0.999 1.086

Notes: The description of predictors is detailed in Table E1. R = 40: rolling window with fixed window size; Opt-R: optimal
selection with K1(u); Opt-G: optimal selection with K2(u); Opt-E: optimal selection with K3(u). We set b = cT–1/3 with c ranging from
1 to 5 (width 0.05). The tuning parameter used to compute θ̃T is set to b̃ = 1.06T–1/5. The row "UCSV" presents the exact RMSFEs of
the forecasts from the UCSV model. The row "AR(4)" presents the ratio of the RMSFEs of the forecasts from an AR(4) model relative
to the benchmark. In other columns, the numbers are also the ratios of the RMSFEs relative to the benchmark. To provide a rough
gauge of whether the two forecasts have significantly different accuracy, we use a Diebold-Mariano t-statistic with fixed smoothing
asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different from zero (using either fixed
b-smoothing or fixed m-smoothing asymptotics) are denoted by an asterisk, corresponding to the 5 percent significance level.
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TABLE 4. Forecasting performance for inflation in Canada: 1985Q1-2019Q4

UCSV 8.474

AR(4) 1.107

Non-local R = 40 Opt-R Opt-G Opt-E

Asset prices

BANK_RATE_L 1.116 0.953 0.968 0.915 1.011

TBILL_3M 1.118 0.955 0.983 0.914 1.023

GOV_AVG_10pY 1.112 0.970 1.026 0.941 1.003

G_AVG_5.10.Bank_rate 1.123 0.960 0.971 0.935 0.988

G_AVG_10p.TBILL_3M 1.118 0.964 0.960 0.929 0.995

TSX_CLO 1.096 0.897 0.929 0.883 0.949

Real economic activity

REAL_GDP 1.116 0.983 1.000 0.932 1.016

hhold_dispo_income 1.104 0.956 0.970 0.935 0.985

REAL_I 1.112 1.037 1.077 0.964 1.247

CANPROINDQISMEI 1.130 0.993 0.982 0.931 1.008

LFEMTTTTCAQ647S 1.109 1.031 1.006 0.946 1.062

UNEMP_CAN 1.110 0.985 1.019 0.942 1.002

hstart_CAN 1.109 0.945 0.972 0.929 0.991

Price indices

CPI_ALL_CAN 1.113 0.916 0.908 0.899 0.946

IPPI_CAN 1.194 0.887 0.925 0.885 0.958

C_PRICE 1.099 0.906 0.962 0.905 0.971

Monetary measures

MBASE1 1.103 0.944 0.958 0.919 1.027

CRED_BUS_cb 1.124 0.997 1.008 0.966 1.040

CRED_HOUS_cb 1.096 0.982 0.973 0.926 0.977

Notes: The description of predictors is detailed in Table E2. See Table 3 for other details on the implementation.
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TABLE 5. Quantile IP growth shock forecasts

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

5th percentile 10th percentile

UQ 0.122 UQ 0.161

CatFin 0.973 1.042 0.975 0.980 0.986 CatfFin 1.003 1.028 1.023 1.003 0.988

Default spread 0.942 0.964 0.992 0.969 0.979 Default spread 0.959 1.005 0.990 0.973 0.980

TED spread 0.948 0.990 0.952 0.916∗ 0.950 TED spread 0.981 0.994 0.973 0.955 0.980

Term spread 0.978 1.061 1.004 1.002 1.022 Term spread 1.005 1.056 1.042 1.014 1.021

Slope factor 0.990 1.082 1.020 1.015 1.014 Slope factor 1.001 1.062 1.049 1.016 1.035

VIX 0.986 1.019 0.940 0.938 0.912 VIX 1.006 1.021 0.998 1.003 1.071

Stock return 1.010 1.083 1.017 0.994 1.010 Stock return 1.000 1.051 1.037 1.001 1.030

15th percentile

UQ 0.186

CatFin 0.998 1.056 1.010 1.008 1.023

Default spread 0.972 0.979 1.008 0.998 1.005

TED spread 0.987 0.993 0.977 0.996 1.019

Term spread 1.010 1.034 1.033 1.018 1.034

Slope factor 1.005 1.042 1.042 1.014 1.034

VIX 1.003 1.149∗ 1.061∗ 1.004 1.101∗

Stock return 1.003 1.054∗ 1.024 1.014 1.038

Notes: See Table E3 for the definition of the predictors. "UQ": historical unconditional quantile forecasts; R = 60: rolling window
with fixed window size; Opt-R: optimal selection with K1(u); Opt-G: optimal selection with K2(u); Opt-E: optimal selection with
K3(u). We set b = cT–1/3 with c ranging from 1 to 7 (width 0.1). The tuning parameter used to compute θ̃T is set to b̃ = 1.06T–1/5. For
each specification, the benchmark results (from unconditional historical quantile) are check losses in level and the other entries
present the ratios of check losses relative to the benchmark. Cyan shading indicates the best performing specification within each
variable. Gray shading indicates the overall best performing case. To provide a rough gauge of whether the two forecasts have
significantly different accuracy, we use a Diebold-Mariano t-statistic with fixed smoothing asymptotics as in Coroneo and Iacone
(2020). Differences in accuracy that are statistically different from zero (using either fixed b-smoothing or fixed m-smoothing
asymptotics) are denoted by an asterisk, corresponding to the 5 percent significance level.

36



TABLE 6. Quantile inflation shock forecasts

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

5th percentile 10th percentile

UQ 0.039 UQ 0.058

CatFin 1.043 0.946 0.989 0.929 1.016 CatfFin 1.010 1.043 1.002 0.992 1.010

Default spread 1.053 0.839 0.893 0.851 0.992 Default spread 1.021 0.938 0.978 0.938 0.983

TED spread 1.027 0.834 0.954 0.848 0.910 TED spread 0.987 0.958 0.938∗ 0.924∗ 0.959

Term spread 1.016 1.035 0.989 1.011 1.067 Term spread 1.020 1.041 1.003 0.967 1.022

Slope factor 1.034∗ 1.033 1.016 0.989 0.987 Slope factor 1.019 1.036 1.007 0.960 1.039

VIX 0.996 1.301 1.062 0.975∗ 1.233 VIX 0.988 1.236∗ 1.014 0.948 1.057

Stock return 1.036 1.050 1.118 0.956 1.067 Stock return 1.011 0.943 0.928 0.922 0.945

15th percentile

UQ 0.070

CatFin 1.000 1.025 0.993 0.980 1.022

Default spread 1.022 0.968 0.997 0.991 1.010

TED spread 0.981 0.963 0.949∗ 0.950∗ 0.961

Term spread 1.020 1.010 1.015 0.963∗ 1.025

Slope factor 1.022 1.004 0.999 0.963∗ 1.014

VIX 0.996 1.091 1.011 0.986 1.022

Stock return 1.010 0.948 0.957 0.921∗ 0.974

85th percentile 90th perentile

UQ 0.068 UQ 0.052

CatFin 1.007 0.976 0.934 0.961 0.956 CatfFin 1.007 1.011 0.959 0.948 0.975

Default spread 0.960 0.976 0.978 0.986 0.992 Default spread 0.954 1.028 1.022 0.964 1.014

TED spread 0.941 0.937 0.925 0.934 0.916 TED spread 0.947 0.949 0.956 0.937 0.948

Term spread 0.937 0.936 0.937 0.934 0.935 Term spread 0.932 0.924 0.928 0.926 0.932

Slope factor 0.935 0.929 0.943 0.932 0.925 Slope factor 0.927 0.941 0.969 0.924 0.933

VIX 1.001 1.061 1.007 0.956 1.019 VIX 1.003 1.217∗ 1.050 1.001 1.083

Stock return 1.023∗ 0.931 0.941 0.949 0.936 Stock return 1.029∗ 0.989 0.986 0.962 0.995

95th percentile

UQ 0.032

CatFin 0.992 1.096 0.978 0.993 1.019

Default spread 0.947 1.178 1.171 1.000 1.145

TED spread 1.014 1.075 1.024 1.036 1.006

Term spread 0.977 1.031 1.046 1.049 0.962

Slope factor 0.965 1.040 1.014 1.033 1.031

VIX 0.980 1.341∗ 1.262∗ 1.123 1.082

Stock return 1.017 1.179 1.076 1.085 1.082

Notes: See Table 5 for the details on the predictors and the implementation.
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TABLE 7. Forecasting performance: specification with lag

Non-local R = 40 Opt-R Opt-G Opt-E Non-local R = 40 Opt-R Opt-G Opt-E

United States Canada

OLS 1.452 OLS 5.804

stock return 1.019 1.142 1.150 1.050 1.127 stock return 0.985 1.018 1.081 1.015 1.108

treasury bill 1.065 1.115 1.122 1.044 1.129 treasury bill 0.998 0.926 0.959 1.049 0.994

spread 1.014 1.105 1.140 1.030 1.116 spread 1.004 1.086 1.161 1.081 1.176

inflation 1.028 1.130 1.175 1.074 1.170 inflation 0.975 0.975 1.066 1.001 1.119∗

growth 1.018 1.208 1.300 1.149 1.351 growth 1.041 1.079 1.158 1.085 1.194

MIDAS MIDAS

stock return 1.021 1.118 1.139 1.051 1.199 stock return 1.021 1.123 1.191 1.093 1.245∗

treasury bill 1.055 1.133 1.148 1.046 1.131 treasury bill 1.006 0.994 1.027 1.071 1.070

spread 1.038 1.121 1.123 1.050 1.160 spread 1.000 1.068 1.149 1.075 1.174

inflation 1.026 1.158 1.163 1.126 1.182 inflation 0.965 1.062 1.165∗ 1.061 1.264

growth 1.023 1.133 1.092 1.038 1.078 growth 1.013 1.109 1.215∗ 1.105 1.211

France Germany

OLS 1.166 OLS 0.848

stock return 0.956 1.163 1.115 1.029 1.031 stock return 0.993 1.014 0.985 1.014 0.965

treasury bill 1.046 1.193 1.007 1.081 1.020 treasury bill 0.978 0.984 0.951 1.046 0.909

spread 1.005 1.240∗ 1.150 1.079 1.008 spread 0.978 1.004 0.988 1.079 0.982

inflation 1.012 1.272∗ 1.185 1.071 1.078 inflation 0.947 0.979 0.950 1.014 0.942

growth 1.012∗ 1.231∗ 1.165 1.090 1.064 growth 0.950 1.005 0.931 1.057 0.936

MIDAS MIDAS

stock return 1.037 1.227∗ 1.115 1.089 1.048 stock return 1.034 1.077 1.052 1.025 1.012

treasury bill 1.055 1.203 1.134 1.076 1.078 treasury bill 1.018 1.015 1.045 1.000 1.037

spread 1.001 1.251∗ 1.260 1.079∗ 1.078 spread 0.996 0.983 0.988 0.964 0.930

inflation 1.008 1.191∗ 1.032 1.058 0.956 inflation 0.998 1.076 1.072 0.991 1.093

growth 1.005 1.164 1.138 1.046 1.059 growth 0.982 0.948 0.945 0.943 0.898

Australia

OLS 2.573

stock return 1.006 0.897 0.918 0.871 0.960

treasury bill 0.992 1.045 0.990 0.965 1.005

spread 1.001 0.941 0.916 0.952 0.929

inflation 1.007∗ 1.088 1.178 0.991 1.130

growth 0.988 1.021 1.040 0.978 1.057

MIDAS

stock return 1.023 1.126∗ 1.101 1.067 1.166∗

treasury bill 1.005 1.064 1.100 1.002 1.179

spread 0.998 0.997 1.063 0.978 1.073

Notes: The description of predictors is detailed in Table E4. R = 40: rolling window with fixed window size; Opt-R: optimal
selection with K1(u); Opt-G: optimal selection with K2(u); Opt-E: optimal selection with K3(u). We set b = cT–1/3 with c ranging from
1 to 5 (width 0.05). The tuning parameter used to compute θ̃T is set to b̃ = 1.06T–1/5. For each specification, the entries present the
ratios of MSFEs relative to the non-local benchmark (without any economic variable). Cyan shading indicates the best performing
specification within each variable. Gray shading indicates the overall best performing case. To provide a rough gauge of whether
the two forecasts have significantly different accuracy, we use a Diebold-Mariano t-statistic with fixed smoothing asymptotics as in
Coroneo and Iacone (2020). Differences in accuracy that are statistically different from zero (using either fixed b-smoothing or
fixed m-smoothing asymptotics) are denoted by an asterisk, corresponding to the 5 percent significance level.
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TABLE 8. Forecasting performance: specification with valuation ratio

Non-local R = 40 Opt-R Opt-G Opt-E Non-local R = 40 Opt-R Opt-G Opt-E

United States Canada

OLS 2.246 OLS 7.954

stock return 1.018 1.145 1.267 1.014 1.007 stock return 0.916 1.015 1.010 0.919 1.015

treasury bill 1.028 1.028 1.162 1.002 0.876 treasury bill 0.968 0.822 0.835 0.865 0.802

spread 1.037 1.070 1.023 1.007 0.883 spread 1.045 1.144 1.089 1.042 1.082

inflation 1.079 1.141 1.196 0.994 0.917 inflation 1.002 1.113 1.077 1.041 1.104

growth 1.004 1.227∗ 1.375 1.039 1.071 growth 1.063 1.136 1.121 1.031 1.141

MIDAS MIDAS

stock return 1.014 1.109 0.970 0.992 0.859 stock return 0.992 1.145 1.018 0.989 1.030

treasury bill 1.014 1.096 0.956 0.967 0.825 treasury bill 0.935 0.842 0.792 0.912 0.799

spread 1.059 1.292 0.959 1.034 0.898 spread 1.000 1.150 1.020 0.996 1.046

inflation 1.004 1.109 0.953 0.926 0.825 inflation 1.017 1.133 1.078 1.058 1.102

growth 1.011 1.206 0.976 1.005 0.887 growth 1.012 1.152 1.004 0.998 1.006

France Germany

OLS 2.202 1.600

stock return 0.993 1.061 0.809 0.865 0.659 stock return 1.003 0.863 0.718 0.848 0.721

treasury bill 0.958 0.834 0.694 0.809 0.694 treasury bill 0.894 0.673 0.705 0.785 0.721

spread 0.997 1.045 0.818 0.838 0.721 spread 0.927 0.615 0.577 0.722 0.537

inflation 0.984 1.035 0.886 0.888 0.763 inflation 0.971 0.838 0.770 0.841 0.773

growth 1.031 1.007 0.793 0.899 0.666 growth 1.002 0.906 0.855 0.919 0.877

MIDAS MIDAS

stock return 1.011 1.108 0.827 0.902 0.745 stock return 1.033 0.939 0.898 0.958 0.824

treasury bill 0.962 0.958 0.737 0.802 0.658 treasury bill 0.912 0.763 0.832 0.816 0.828

spread 0.992 1.131 0.777 0.924 0.638 spread 0.936 0.651 0.633 0.753 0.554

inflation 1.016 1.075 0.781 0.928 0.705 inflation 1.012∗ 0.925 0.821 0.904 0.794

growth 1.025 1.069 0.804 0.883 0.731 growth 0.982 0.901 0.827 0.918 0.794

Australia

OLS 4.802

stock return 0.986 0.958 0.918 0.926 0.949

treasury bill 0.945∗ 0.948 0.932 0.889 0.970

spread 0.998 0.964 0.847 1.022 0.866

inflation 0.993 1.122 1.055 1.063 1.147

growth 1.006∗ 1.103 1.066 1.065 1.099

MIDAS

stock return 1.005 1.078 0.915 0.976 0.948

treasury bill 0.982 1.068 0.911 0.985 0.901

spread 1.002 1.115 0.979 1.005 1.007

Notes: See Table 7 for the details on the definition of predictors and the implementation.
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TABLE 9. Out-of-sample forecasting performance on bond returns: United States

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

USA - 2 years USA - 3 years

PC-yields 1.592 PC-yields 6.046

FB 1.047 1.150 1.103 0.958 0.852 FB 0.979 1.038 0.967 0.922 0.743

CP 1.113 1.122 0.949 1.005 0.744 CP 1.106 1.075 0.899 0.965 0.705

FB+CP 1.107 0.964 0.876 0.919 0.652 FB+CP 1.116 0.903 0.780 0.882 0.578∗

USA - 4 years USA - 5 years

PC-yields 11.836 PC-yields 18.670

FB 0.960 0.943 0.884 0.905 0.709 FB 0.941 0.872 0.875 0.900 0.707

CP 1.101 1.037 0.863 0.943 0.708∗ CP 1.099 1.025 0.862 0.941 0.738∗

FB+CP 1.099 0.778 0.694 0.841 0.518∗ FB+CP 1.075 0.751 0.693 0.861 0.535∗

Notes: See section 5.4 for the definition of the predictors FB and CP. R = 40: rolling window with fixed window size; Opt-R: optimal
selection with K1(u); Opt-G: optimal selection with K2(u); Opt-E: optimal selection with K3(u). We set b = cT–1/3 with c ranging
from 1 to 7 (width 0.1). The tuning parameter used to compute θ̃T is set to b̃ = 1.06T–1/5. For each specification, the benchmark
results (from PCs of the yields) are MSFEs in level and the other entries present the ratios of MSFEs relative to the benchmark. Cyan
shading indicates the best performing specification within each variable. Gray shading indicates the overall best performing case.
To provide a rough gauge of whether the two forecasts have significantly different accuracy, we use a Diebold-Mariano t-statistic
with fixed smoothing asymptotics as in Coroneo and Iacone (2020). Differences in accuracy that are statistically different from zero
(using either fixed b-smoothing or fixed m-smoothing asymptotics) are denoted by an asterisk, corresponding to the 5 percent
significance level.

TABLE 10. Out-of-sample forecasting performance on bond returns: Canada

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

Canada - 2 years Canada - 3 years

PC-yields 1.171 PC-yields 3.534

FB 1.011 0.920 0.953 0.826 0.726 FB 1.029 0.868 0.905 0.859 0.706

CP 1.051 0.888 0.908 0.809 0.744 CP 1.094 0.907 0.898 0.852 0.757

FB+CP 1.034 0.861 0.931 0.798 0.687 FB+CP 1.096 0.813 0.852 0.826 0.642

Canada - 4 years Canada - 5 years

PC-yields 6.545 PC-yields 10.133

FB 1.033 0.860 0.887 0.892 0.707 FB 1.032 0.873 0.899 0.929 0.730

CP 1.129 0.911 0.859 0.882 0.758 CP 1.165 0.931 0.864 0.914 0.781

FB+CP 1.137 0.822 0.847 0.861 0.661 FB+CP 1.149 0.843 0.867 0.895 0.682

Notes: See Table 9 for the details on the definition of predictors and the implementation.
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TABLE 11. Out-of-sample forecasting performance on bond returns: UK

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

UK - 2 years UK - 3 years

PC-yields 1.415 PC-yields 4.378

FB 0.807 0.821 0.907 0.790 0.648 FB 0.897 0.897 1.057 0.866 0.769

CP 0.923 0.764 0.704 0.646 0.593 CP 1.041 0.839 0.769 0.729 0.650

FB+CP 0.921 0.688 0.669 0.645 0.514 FB+CP 1.050 0.751 0.745 0.724 0.591

UK - 4 years UK - 5 years

PC-yields 8.224 PC-yields 12.962

FB 0.949 0.942 1.042 0.897 0.884 FB 0.980 0.983 1.028 0.923 0.936

CP 1.087 0.884 0.811 0.782 0.691∗ CP 1.097 0.916 0.850 0.813 0.727

FB+CP 1.092 0.797 0.780 0.770 0.638 FB+CP 1.075 0.835 0.811 0.789 0.669

Notes: See Table 9 for the details on the definition of predictors and the implementation.

TABLE 12. Out-of-sample forecasting performance on bond returns: Japan

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

Japan - 2 years Japan - 3 years

PC-yields 0.333 PC-yields 1.146

FB 0.222 0.105∗ 0.115∗ 0.099∗ 0.097∗ FB 0.244 0.148∗ 0.167∗ 0.145∗ 0.150∗

CP 0.582 0.102∗ 0.112∗ 0.093∗ 0.098∗ CP 0.677 0.155∗ 0.164∗ 0.140∗ 0.144∗

FB+CP 0.610 0.101∗ 0.134∗ 0.091∗ 0.094∗ FB+CP 0.679 0.149∗ 0.179∗ 0.140∗ 0.141∗

Japan - 4 years Japan - 5 years

PC-yields 2.517 PC-yields 4.050

FB 0.246 0.197∗ 0.186∗ 0.186∗ 0.165∗ FB 0.291 0.267∗ 0.243∗ 0.247∗ 0.219∗

CP 0.817 0.181∗ 0.182∗ 0.162∗ 0.160∗ CP 0.902 0.220∗ 0.223∗ 0.196∗ 0.190∗

FB+CP 0.772 0.186∗ 0.189∗ 0.162∗ 0.168∗ FB+CP 0.871 0.182∗ 0.187∗ 0.167∗ 0.169∗

Notes: See Table 9 for the details on the definition of predictors and the implementation.
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Appendix A. Themodel

We consider time series models of the following form

(A1) yt+h,T = G
(
yt,T ,Xt,T , εt; θt,T

)
, θt,T = θ

(
t/T
)
, t = 1, 2, · · · ,T,

where G( y, x, ε; θ) is a known function, Xt,T contains exogenous predictors and εt is a
sequence of errors and h is the forecast horizon which is assumed to be finite. Collect
Zt,T = ( yt+h,T , yt,T ,X′

t,T)
′. Then, given the specification of G and the property of εt, we

can obtain the corresponding loss: ℓt,T
(
θ(t/T)

)
= ℓ(Zt,T ; θ(t/T)).

Under certain regularity conditions on G and εt, it can be shown that ((see Dahlhaus,
Richter, andWu (2019), Karmakar, Richter, andWu (2022) and Kristensen and Lee (2023)
for details)), for each u ∈ [0, 1], the stationary solution to the model (A1) exists and takes
the following form:

(A2) y∗t+h(u) = G
(
y∗t (u),X

∗
t (u), εt; θ(u)

)
.

Before stating formally the technical assumptions, we introduce the following two
definitions.

DEFINITION A1. A triangular array of processes Wt,T(θ), θ ∈ Θ, t = 1, 2, · · · ,T, T = 1, 2, · · ·
is locally stationary if there exists a stationary process Wt/T,t(θ) for each rescaled time point
t/T ∈ [0, 1], such that for some 0 < ρ < 1 and all T,

P
(
max
θ∈Θ

max
1⩽t⩽T

|Wt,T(θ) –Wt/T,t(θ)| ⩽ CT(T–1 + ρt)
)
= 1,
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where CT is a measurable process satisfying supT E
(
|CT |η

)
<∞ for some η > 0.

Note that this definition follows from Kristensen and Lee (2023) to let an additional
term ρt appear in the approximation error. This ensures that the processWt,T(θ) can
be arbitrarily initialized. The next definition again is borrowed from Kristensen and
Lee (2023).

DEFINITION A2. A stationary process Wt(θ), θ ∈ Θ, is said to be L p-continuous w.r.t. θ for
some p ⩾ 1 if

(i) |Wt(θ)| p <∞ for all θ ∈ Θ;

(ii) ∀ϵ > 0, ∃δ > 0, such that

E
[

max
θ′:∥θ–θ′∥

|Wt(θ) –Wt(θ′)| p
]1/ p

< ϵ.

Appendix B. Technical assumptions

ASSUMPTION B1. (time-varying parameters) θt,T = θ
(
t/T
)
= θ(u), u = t/T, θ(·) : (0, 1] −→

Θ and Θ is compact. Let θℓ(t/T) (ℓ = 1, 2, · · · , k) be the ℓth elements in θu.

(i) θℓ(t/T) satisfies the following

|θℓ(t/T) – θℓ(s/T)| ⩽ cℓ
( |t – s|

T

)γ
, t, s = 1, 2, · · · ,T,

where 0 < γ ⩽ 1 and cℓ is a positive constant satisfyingmaxℓ |cℓ| <∞.

(ii) θℓ(·) is twice continuously differentiable on (0, 1].

ASSUMPTION B2. (loss process)

(i) ℓt,T(θ) is measurable and three-times continuously differentiable w.r.t. θ;

(ii) ℓt,T(θ) is locally stationary with stationary approximation ℓu,t(θ) for each rescaled time
point u ∈ (0, 1];

(iii) ℓ
(1)
t,T(θ) =

∂ℓt,T (θ)
∂θ is locally stationary with stationary approximation ℓ

(1)
u,t(θ) =

∂ℓu,t(θ)
∂θ

for each rescaled time point u ∈ (0, 1];
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(iv) For each j = 1, 2, · · · , k, ℓ(2 j )t,T (θ) = ∂2ℓt,T (θ)
∂θ∂θ j

is locally stationary with stationary approx-

imation ℓ
(2 j )
u,t (θ) =

∂2ℓu,t(θ)
∂θ∂θ j

for each rescaled time point u ∈ (0, 1].

ASSUMPTION B3. (stationary approximation) For each rescaled time point u ∈ (0, 1],

(i) ℓu,t(θ) is ergodic and L1-continuous w.r.t θ; E
[
ℓu,t(θ)

]
is uniquely minimized at θ(u);

(ii) ℓ
(1)
u,t(θ) is ergodic and satisfies E(ℓ

(1)
u,t+h(θ)|Ft) = 0, where Ft = σ( y∗s (u),X∗

s (u), s ⩽ t).(
y∗s (u),X∗

s (u)
)
are the stationary solution of the model given in (A2); central limit

theorem (CLT) holds (as Tb→ ∞):

1√
Tb

T∑
t=1

ktT
∂ℓu,t(θu)

∂θ′
d−→ N

(
0,ϕ0,KΛu

)
,

where ϕ0,K =
∫
C K

2(u)du and Λu = Var
(
∂ℓu,0(θu)

∂θ′

)
;

(iii) For each j = 1, 2, · · · , k, ℓ(2 j )u,t (θ) is ergodic and all the eigenvalues of ℓ
(2)
u,t(θ) =

∂2ℓu,t(θ)
∂θ∂θ′

are uniformly bounded over θ ∈ Θ.

ASSUMPTION B4. (weighting functions) Let K(·) and K̃(·) be the weighting functions for (3)
and (11), respectively:

(i) K(u) ⩾ 0, u ∈ C is a Lipschitz continuous function and
∫
K(u)du = 1;

(ii) K̃(u) ⩾ 0, u ∈ C is a Lipschitz continuous function,
∫
K̃(u)du = 1 and C is compact.

ASSUMPTION B5. (tuning parameters) The tuning parameters b and b̃ are such that: (i)
Tb̃5 → 0; (ii) b/b̃→ 0; (iii) T1/2b̃1/2bγ → ∞ for some 0 < γ ⩽ 1.

Assumption B1 imposes conditions on the loss, its score and Hessian. We do not
assume stationarity, but require the existence of stationary approximation for each
scaled time point u ∈ (0, 1]. This assumption can be verified from more primitive
conditions on G, εt and θ(·), which is also related to the existence of stationary solution
of (A1). More details can be found in Dahlhaus, Richter, and Wu (2019) and Karmakar,
Richter, and Wu (2022). Note that, the conditions are also model specific. Karmakar,
Richter, and Wu (2022) provide analysis on both recursive defined time series (tvARMA
or tvARCHmodels) and time-varying GARCHmodel. For the quantile regression model
used in Sec. 5.2, the technical details can be found in Zhou and Wu (2009) and Xu, Kim,
and Zhao (2022).
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Assumption B2 imposes conditions on the approximated stationary process for each
rescaled time point u ∈ (0, 1]. These conditions ensure that certain weak law of large
numbers (WLLN) and CLT can be directly applied in the proof of Lemmas C1 and C2.
Traditionally, this assumption can be verified by primitive conditions such as mixing
conditions on the process. However, as explained in Lu and Linton (2007) and Li, Lu,
and Linton (2012), mixing conditions may lead to some undesirable properties in time-
varying parameter models. We can follow Inoue, Jin, and Rossi (2017) by assuming that
the process is near-epoch dependence. Alternative, we can follow Cai and Juhl (2023),
which make the use of the characterizations of processes from Zhou and Wu (2010).

Assumption B3 impose conditions on the time-varying parameters. While (i) is more
general than (ii) and is sufficient for the consistency of the local estimator, for the
asymptotic optimality of the tuning parameter selection, we do require differentiability.
However, as explained in section 3.1, this condition is not restrictive as the cases consid-
ered in Giraitis, Kapetanios, and Yates (2014) and Dendramis, Giraitis, and Kapetanios
(2021) are included. Assumption B4 introduces conditions for the weighting function.
As explained in Kristensen and Lee (2023), when local linear estimator is used, sup-
port of the weighting function C should be compact. This rules out the use of certain
weighting function, such as K2(u). Assumption B5 is a condition for the two tuning
parameters which again ensures the asymptotic optimality of the tuning parameter
selection procedure.

Appendix C. Auxiliary results

LEMMA C1. Suppose that Assumptions B1(i), B2, B3, B4(i) hold with b→ 0 and Tb→ ∞.
Then, it holds that

(i) Consistency: θ̂K,b,T
p−→ θ1;

(ii) Consistency rate: for some 0 < γ ⩽ 1, we have∥∥∥θ̂K,b,T – θ1∥∥∥ = O p((Tb)–1/2 + bγ);
(iii) CLT: if T1/2b1/2+γ → 0, we have

√
Tb
(
θ̂K,b,T – θ1

)
d−→ N

(
0,ϕ0,KΣ1

)
,
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where Σ1 = H–11 Λ1H–11 , ϕ0,K =
∫
K2(u)du, Λ1 = Var

(
∂ℓ1,0(θ1)

∂θ′

)
and H1 = E

[
∂2ℓ1,0(θ1)
∂θ∂θ′

]
.

PROOF. For the local estimator θ̂K,b,T , it is assumed that θ(t/T) ≈ θ1. Then θ1 is obtained
viaM-estimation minimizing the sample loss function:

(C1) θ̂K,b,T = arg min
θ1∈Θ

1
Tb

T∑
t=1

ktTℓt,T(θ1),

where ℓt,T(θ1) = ℓ( yt,T , ŷt,T|t–1,T(θ1)). Let LT(θ1) =
1
Tb ∑

T
t=1 ktTℓt,T(θ1).

Proof of (i): Write LT(θ1|1) = 1
Tb ∑

T
t=1 ktTℓ1,t(θ1), where ℓ1,t(·) is the stationary approxi-

mation of ℓt,T at the time point 1. By Definition A1, we have

sup
θ1∈Θ

|LT(θ1) – LT(θ1|1)| ⩽ sup
θ1∈Θ

1
Tb

T
∑
t=1
ktT |ℓt,T(θ1) – ℓ1,t(θ1)|

⩽
1
Tb

T
∑
t=1
ktT(T–1 + ρt) = O(T–1) + O

(
(Tb–1/2)

)
= o(1),(C2)

where order of the second term follows from Cauchy–Schwarz inequality:

1
Tb

T∑
t=1

ktTρt ⩽

√
1

(Tb)2
T
∑
t=1
k2tT

√
T
∑
t=1

ρ2t = O
(
(Tb–1/2)

)
.

This implies that (C1) can be viewed as

θ̂K,b,T = arg min
θ1∈Θ

LT(θ1|1).

In view of Theorem 2.1 in Newey and McFadden (1994), it is sufficient to verify that

(i) E
[
ℓ1,0(θ)

]
is uniquely minimized at θ1 (assumed in Assumption B3(i));

(ii) Θ is compact (assumed in Assumption B1);

(iii) LT(θ1|1) is continuous (implied by Assumption B2(i));

(iv) Uniform weak law of large numbers (UWLLN):

sup
θ1∈Θ

| 1
Tb

T∑
t=1

ktTℓ1,t(θ1) – E
[
ℓ1,0(θ)

]
| = o p(1).
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What remains is to show (iv). The ergodicity assumed in Assumption B3(i) implied that

| 1
Tb

T∑
t=1

ktTℓ1,t(θ1) – E
[
ℓ1,0(θ)

]
| = o p(1).

Then, uniform consistency result follows if we could show that LT(θ1|1) is stochastic
equicontinuous, which follows from the fact that ℓu,t(θ) is L1 continuous.

Proof of (ii) and (iii): Let us first define the score and the Hessian:

H1,T(θ) =
∂2LT(θ)
∂θ∂θ′

=
1
Tb

T∑
t=1

ktT
∂2ℓt,T(θ)
∂θ∂θ′

, ST(θ) =
∂LT(θ)
∂θ

=
1
Tb

T∑
t=1

ktT
∂ℓt,T(θ)

∂θ
.

By a Taylor series expansion of
∂LT (θ̂K,b,T )

∂θ = 0 around the true value θ1, we have

∂LT(θ1)
∂θ

+
∂2LT(θ1)
∂θ∂θ′

(
θ̂K,b,T – θ1

)
= 0,

where θ1 lies between θ1 and θ̂K,b,T . By rearranging terms, we have

θ̂K,b,T – θ1 = –
(∂2LT(θ1)

∂θ∂θ′

)–1(∂LT(θ1)
∂θ

)
= –
(∂2LT(θ1)

∂θ∂θ′

)–1(∂LT(θ1)
∂θ

)
+

[(∂2LT(θ1)
∂θ∂θ′

)–1
–
(∂2LT(θ1)

∂θ∂θ′

)–1]∂LT(θ1)
∂θ

= –
(∂2LT(θ1)

∂θ∂θ′

)–1 (∂LT(θ1)
∂θ

)
+
(∂2LT(θ1)

∂θ∂θ′

)–1 [∂2LT(θ1)
∂θ∂θ′

–
∂2LT(θ1)
∂θ∂θ′

]

×

(∂2LT(θ1)
∂θ∂θ′

)–1∂LT(θ1)
∂θ

,

= –H–11,T(θ1)ST(θ1) +H
–1
1,T(θ1)

[
H1,T(θ1) –H1,T(θ1)

]
H–11,T(θ1)ST(θ1)(C3)

We will show that

∥∥ST(θ1)∥∥ = O p((Tb)–1/2 + bγ),(C4) ∥∥∥H–11,T(θ1)∥∥∥ = O p(1),(C5) ∥∥H1,T(θ1) –H1,T(θ1)∥∥ = o p(1).(C6)
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These bounds together with (C3) implies the consistency rate in C1(i).
Proof of (C4). We have that

ST
(
θ1
)
=
∂LT(θ1)

∂θ
=
1
Tb

T
∑
t=1
ktT

∂ℓt,T(θ1)
∂θ

=
1
Tb

T
∑
t=1
ktT

∂ℓt,T
(
θ(t/T)

)
∂θ

+
1
Tb

T
∑
t=1
ktT

∂2ℓt,T(θ1)
∂θ∂θ′

(
θ1 – θ(t/T)

)
= S1,T + B2,T ,

where the second line follows from Taylor series expansion and θ(1) lies between θ1
and θ(t/T). We see that the score term is decomposed into a variance term S1,T and a
bias term B2,T . Using the similar argument as in (C2), we have∥∥∥S1,T – S∗1,T∥∥∥ = o(1).
where S∗1,T =

1
Tb ∑

T
t=1 ktT

∂ℓ1,t
(
θ(t/T)

)
∂θ . A further Taylor series expansion around θ1 gives

S∗1,T =
1
Tb

T
∑
t=1
ktT

∂ℓ1,t
(
θ1
)

∂θ
+
1
Tb

T
∑
t=1
ktT

∂2ℓ1,t
(
θ1
)

∂θ∂θ′
(
θ1 – θ(t/T)

)
= S∗1,1,T + S

∗
1,2,T .

By Assumption B3(ii), we have
∥∥∥S∗1,1,T∥∥∥ = O p( 1√

Tb

)
. For S∗1,2,T , together with Assumption

B1(i) and B3(iii), we have

∥∥∥S∗1,2,T∥∥∥ ⩽ C
1
Tb

T∑
t=1

ktT

∥∥∥∥∥∂2ℓ1,t
(
θ1
)

∂θ∂θ′

∥∥∥∥∥( |t – T|T

)γ
⩽ C

1
Tb

T∑
t=1

ktT
( |t – T|

T

)γ
∼ bγ

∫
C
K(u)uγdu,

which implies that
∥∥∥S∗1,2,T∥∥∥ = O p(bγ) = o p(1). This further implies that ∥∥S1,T∥∥ ⩽

∥∥∥S∗1,1,T∥∥∥+∥∥∥S∗1,2,T∥∥∥ = O p( 1√
Tb

)
.

Let us move on to analyze the bias term B2,T . Let θ(1)→ θ(1). Then, we have that

∥∥B2,T∥∥ ⩽ C
1
Tb

T∑
t=1

ktT
∂2ℓt,T(θ1)
∂θ∂θ′

( |t – T|
T

)γ
= B2,T,1.
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For B2,T,1, following (C2), we have

sup
θ1∈Θ

∥∥∥B2,T,1 – B∗2,T,1∥∥∥ = O p(bγ) = o p(1),
where B∗2,T,1 =

1
Tb ∑

T
t=1 ktT

∂2ℓ1,t(θ1)
∂θ∂θ′

(
|t–T|
T

)γ
. Since

B∗2,T,1 =
1
Tb

T
∑
t=1
ktT

[
∂2ℓ1,t(θ1)
∂θ∂θ′

– E
[∂2ℓ1,0(θ1)

∂θ∂θ′

]
+ E
[∂2ℓ1,0(θ1)

∂θ∂θ′

]]( |t – T|
T

)γ
=
1
Tb

T
∑
t=1
ktT

[
∂2ℓ1,t(θ1)
∂θ∂θ′

– E
[∂2ℓ1,0(θ1)

∂θ∂θ′

]]( |t – T|
T

)γ
+
1
Tb

T
∑
t=1
ktTE

[∂2ℓ1,0(θ1)
∂θ∂θ′

]( |t – T|
T

)γ
= B∗2,T,1,1 + B

∗
2,T,1,2.

By Assumption B3(iii), we have
∥∥∥B∗2,T,1,1∥∥∥ = O p(bγ). For B∗2,T,1,2, we again have

∥∥∥B∗2,T,1,2∥∥∥ ⩽ C
1
Tb

T∑
t=1

ktT
( |t – T|

T

)γ
∼ bγ

∫
C
K(u)uγdu,

which also implies that
∥∥∥B∗2,T,1,2∥∥∥ = O p(bγ). Then, (C4) follows again from triangular

inequality.
Proof of (C5). It follows again similarly from (C2) that

sup
θ1∈Θ

∥∥∥H1,T(θ1) –H∗
1,T(θ1)

∥∥∥ = o p(1),
where H∗

1,T(θ1) =
1
Tb ∑

T
t=1 ktT

∂2ℓ1,t(θ1)
∂θ∂θ′ . Write

H∗
1,T(θ1) =

1
Tb

T
∑
t=1
ktTE

[∂2ℓ1,0(θ1)
∂θ∂θ′

]
+
1
Tb

T
∑
t=1
ktT

(
∂2ℓ1,t(θ1)
∂θ∂θ′

– E
[∂2ℓ1,0(θ1)

∂θ∂θ′

])
= H∗

1,T,1 +H
∗
1,T,2 = H

∗
1,T,1

(
Ik + ∆̃

∗
T
)
,(C7)

where ∆̃∗
T =

(
H∗
1,T,1

)–1(H∗
1,T –H

∗
1,T,1

)
. By Assumption B3(iii), there exists v > 0 such that

for all t ⩾ 1,

a′E
[∂2ℓ1,0(θ1)

∂θ∂θ′

]
a ⩾ 1/v > 0.

51



Thus, we have, for any k × 1 vector a = (a1, · · · , ak)′ such that ∥a∥
2 = 1

min
∥a∥=1

a′H∗
1,T,1a = min∥a∥=1

( 1
Tb

T∑
t=1

ktTa′E
[∂2ℓ1,0(θ1)

∂θ∂θ′

]
a
)
⩾
1
v

( 1
Tb

T∑
t=1

ktT
)
> 0.

This means that the smallest eigenvalue of H∗
1,T,1 is not smaller than 1/v > 0, which

further implies that ∥∥∥(H∗
1,T,1

)–1∥∥∥
s p
= O p(1).

In addition, by Assumption B3(iii), we have∥∥∥H∗
1,T –H

∗
1,T,1

∥∥∥
s p
= o p(1).

Then, ∥∥∥H∗–1
1,T (θ1)

∥∥∥
s p

⩽
∥∥∥(H∗

1,T,1
)–1∥∥∥

s p

(
1 –
∥∥∥H∗

1,T –H
∗
1,T,1

∥∥∥
s p

)–1 = O p(1),
which implies that

∥∥∥H–11,T(θ1)∥∥∥s p = O p(1).
Proof of (C6). This follow immediately by the consistency: θ̂K,b,T

p→ θ(1).
Back to (C3), we have

√
Tb
(
θ̂K,b,T – θ1

)
= –H∗–1

1,T (θ1)
√
Tb
(
S1,T + B2,T

)
Since

∥∥∥√TbS1,T∥∥∥ = O p(1),∥∥∥√TbS2,T∥∥∥ = O p(T1/2b1/2+γ), under the conditionT1/2b1/2+γ →
0, the dominating term is the first one, by applying CLT on

√
TbS1,T , together with Slut-

sky’s theorem, we obtain

√
Tb
(
θ̂K,b,T – θ1

)
d−→ N

(
0,ϕ0,KΣ1

)
,

where Σ1 = H–11 Λ1H–1, H1 = E
[
∂2ℓ1,0(θ1)
∂θ∂θ′

]
and Λ1 = Var

(
∂ℓ1,0(θ1)

∂θ′

)
.

LEMMA C2. Suppose that Assumptions B1(ii), B2, B3, B4(ii) hold with b̃→ 0 and Tb̃→ ∞.
Then, it holds that ∥∥∥θ̃T – θ1∥∥∥ = O p((Tb̃)–1/2 + b̃2).

52



PROOF. The objective function is given by

LT(θ1, θ
(1)
1 ) =

1
Tb̃

T∑
t=1

k̃tTℓt,T
(
θ1 + θ

(1)
1 (t/T – 1)

)
.

Define β1 = θ1 + θ
(1)
1 (t/T – 1). Similarly as in (C3), we have that

(C8)

(
θ̃T – θ1
θ̃
(1)
T – θ(1)1

)
= –
(∂L2T(β1)
∂β1∂β′

1

)–1∂LT(β1)
∂β1

+ o p(1).

Notice that

∂L2T(β1)
∂β1∂β′

1
=


1
Tb̃

∑
T
t=1 k̃tT

∂2ℓt,T

(
β1

)
∂θ1∂θ′1

1
Tb̃

∑
T
t=1 k̃tT

∂2ℓt,T

(
β1

)
∂θ1∂θ

′(1)
1

(
t–T
T

)
1
Tb̃

∑
T
t=1 k̃tT

∂2ℓt,T

(
β1

)
∂θ

(1)
1 ∂θ′1

(
t–T
T

)
1
Tb̃

∑
T
t=1 k̃tT

∂2ℓt,T

(
β1

)
∂θ

(1)
1 ∂θ

′(1)
1

(
t–T
T

)2
 .

Using similar arguments for the proofs of (C4)-(C5), we have∥∥∥∥∥∥ 1
Tb̃

T
∑
t=1
k̃tT

∂2ℓt,T
(
β1
)

∂θ1∂θ′1

∥∥∥∥∥∥ = O p(1),
∥∥∥∥∥∥ 1
Tb̃

T
∑
t=1
k̃tT

∂2ℓt,T
(
β1
)

∂θ1∂θ
′(1)
1

( t – T
T

)∥∥∥∥∥∥ = O p(b̃)∥∥∥∥∥∥ 1
Tb̃

T
∑
t=1
k̃tT

∂2ℓt,T
(
β1
)

∂θ
(1)
1 ∂θ′1

( t – T
T

)∥∥∥∥∥∥ = O p(b̃),
∥∥∥∥∥∥ 1
Tb̃

T
∑
t=1
k̃tT

∂2ℓt,T
(
β1
)

∂θ
(1)
1 ∂θ

′(1)
1

( t – T
T

)2∥∥∥∥∥∥ = O p(b̃2)
Using the property of the inverse of the partitioned matrices (see, Abadir and Magnus
(2005)), we have (∂L2T(β1)

∂β1∂β′
1

)–1
=

[
O p(1) O p(b̃–1)
O p(b̃–1) O p(b̃–2)

]
.

Next, we have

(C9)
∂LT(β1)
∂β1

=

 1
Tb̃

∑
T
t=1 k̃tT

∂ℓt,T
(
β1
)

∂θ1

1
Tb̃

∑
T
t=1 k̃tT

∂ℓt,T
(
β1
)

∂θ
(1)
1

(
t–T
T

)
 =

[
S̃1,T
S̃2,T

]
.
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By Assumption B1(ii), we have that

θ(t/T) ≈ θ1 + θ
(1)
1

( t – T
T

)
+
θ
(2)
1
2

( t – T
T

)2
.

Then, for S̃1,T , Taylor expansion around θ(t/T) gives

S̃1,T =
1
Tb̃

T
∑
t=1
k̃tT

∂ℓt,T
(
θ(t/T)

)
∂θ1

+
1
Tb̃

T
∑
t=1
k̃tT

∂2ℓt,T
(
θ1
)

∂θ1∂θ′1

(
θ1 + θ(1)(1)

( t – T
T

)
– θ(t/T)

)
=
1
Tb̃

T
∑
t=1
k̃tT

∂ℓt,T
(
θ(t/T)

)
∂θ1

+
1
Tb̃

T
∑
t=1
k̃tT

∂2ℓt,T
(
θ1
)

∂θ1∂θ′1

θ
(2)
1
2

( t – T
T

)2
,

where θ1 lies between θ(t/T) and β1. Similarly, we have

S̃2,T =
1
Tb̃

T∑
t=1

k̃tT
∂ℓt,T

(
θ(t/T)

)
∂θ(1)

( t – T
T

)
+
1
Tb̃

T∑
t=1

k̃tT
∂2ℓt,T

(
θ1
)

∂θ(1)∂θ′(1)
θ(2)(1)
2

( t – T
T

)3
.

Now, back to (C8), we have

(
θ̃T – θ1
θ̃
(1)
T – θ(1)1

)
= –
(∂L2T(β1)
∂β1∂β′

1

)–1  1
Tb̃

∑
T
t=1 k̃tT

∂ℓt,T
(
θ(t/T)

)
∂θ1

1
Tb̃

∑
T
t=1 k̃tT

∂ℓt,T
(
θ1
)

∂β2

(
t–T
T

)


︸ ︷︷ ︸
Q1,T

–
(∂L2T(β1)
∂β1∂β′

1

)–1 
1
Tb̃

∑
T
t=1 k̃tT

∂2ℓt,T
(
θ1
)

∂θ1∂θ′1

θ(2)(1)
2

(
t–T
T

)2
1
Tb̃

∑
T
t=1 k̃tT

∂2ℓt,T
(
θ1
)

∂θ
(1)
1 ∂θ

′(1)
1

θ(2)(1)
2

(
t–T
T

)3


︸ ︷︷ ︸
Q2,T

.

Following again the proofs of (C4)-(C5), we have

Q1,T =

[
O p
(
(Tb̃)–1/2

)
O p((Tb̃)–1/2b̃)

]
, Q2,T =

[
O p
(
b̃2
)

O p(b̃3)

]
.

Therefore, we obtain the consistency rate for θ̃T :∥∥∥θ̃T – θ1∥∥∥ = O p((Tb̃)–1/2 + b̃2).
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LEMMA C3. Suppose that Assumptions B1(i), B2, B3, B4(i) hold with b→ 0 and Tb→ ∞.
Then, for some 0 < δ < 1

2 and 0 < γ ⩽ 1, it holds that

(C10) sup
b∈IT

∥∥∥θ̂K,b,T – θ1∥∥∥ = O p(rT,b,δ,γ),
where rT,b,δ,γ = T–1/2b–1/2+δ + bγ.

PROOF. Write θ̂K,b,T = θ̂b,T . As in (C3), the estimator can be decomposed as

θ̂b,T – θ1 = –H1,TST + o p(1)

= –H1,T(S1,T + B2,T) + o p(1),(C11)

where

H1,T =

(
1
Tb

T
∑
t=1
ktT

∂2ℓt,T(θ1)
∂θ∂θ′

)–1
,

S1,T =
1
Tb

T
∑
t=1
ktT

∂ℓt,T(θ(t/T))
∂θ

, B2,T =
1
Tb

T
∑
t=1
ktT

∂2ℓt,T(θ1)
∂θ∂θ′

(
θ1 – θ(t/T)

)
,

and θ1 lies between θ1 and θ(t/T). We will show that

sup
b∈IT

∥∥∥∥ 1
T1/2b1/2–δ

T
∑
t=1
ktT

∂ℓt,T(θ1)
∂θ

∥∥∥∥ = O p(1), for 0 < δ < 1/2,(C12)

sup
b∈IT

∥∥∥∥∥∥
(
1
Tb

T
∑
t=1
ktT

∂2ℓt,T(θ1)
∂θ∂θ′

)–1∥∥∥∥∥∥ = O p(1),(C13)

sup
b∈IT

∥∥∥∥∥ 1Tb T
∑
t=1
ktT

∂2ℓt,T(θ1)
∂θ∂θ′

(
θ1 – θ(t/T)

)∥∥∥∥∥ = O p(bγ) for 0 < γ ⩽ 1(C14)

These bounds together with (C11) prove (C10).
Proof of (C12). By Boole’s inequality and Chebyshev’s inequality, we have, for any

ε > 0,

P

(
sup
b∈IT

∥∥∥∥ 1
T1/2b1/2–δ

T
∑
t=1
ktT

∂ℓt,T(θ1)
∂θ

∥∥∥∥ > ε

)
⩽ ∑
b∈IT

P

(∥∥∥∥ 1
T1/2b1/2–δ

T
∑
t=1
ktT

∂ℓt,T(θ1)
∂θ

∥∥∥∥ > ε

)
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⩽ |IT | × sup
b∈IT

P

(∥∥∥∥ 1
T1/2b1/2–δ

T
∑
t=1
ktT

∂ℓt,T(θ1)
∂θ

∥∥∥∥ > ε

)

⩽ |IT | × sup
b∈IT

C
bδε2

= O(1),

where the third inequality follows from (C4).
Proof of (C13). As in (C5), consider H∗

1,T :

1
Tb

T
∑
t=1
ktT

∂2ℓ1,t(θ1)
∂θ∂θ′

=
1
Tb

T
∑
t=1
ktTE

[∂2ℓ1,0(θ1)
∂θ∂θ′

]
+
1
Tb

T
∑
t=1
ktT

(
∂2ℓ1,t(θ1)
∂θ∂θ′

– E
[∂2ℓ1,0(θ1)

∂θ∂θ′

])
= H∗

1,T,1 +H
∗
1,T,2 = H

∗
1,T,1

(
Ik + ∆̃

∗
T
)
,(C15)

where ∆̃∗
T =

(
H∗
1,T,1

)–1(H∗
1,T –H

∗
1,T,1

)
. First, (C5) holds uniformly over b:

(C16) sup
b∈IT

∥∥∥(H∗
1,T,1

)–1∥∥∥
s p
= O p(1).

For ∆̃∗
T , let ∆̃

∗
t =

∂2ℓ1,t(θ1)
∂θ∂θ′ – E

[
∂2ℓ1,0(θ1)
∂θ∂θ′

]
. Then, for any ε > 0, , by Boole’s inequality and

Chebyshev’s inequality, we have

P

(
sup
b∈IT

∥∥∥∥ 1Tb T
∑
t=1
ktT∆̃∗

t

∥∥∥∥ > ε

)
⩽ ∑
b∈IT

P

(∥∥∥∥ 1Tb T
∑
t=1
ktT∆̃∗

t

∥∥∥∥ > ε

)

⩽ |IT | × sup
b∈IT

P

(∥∥∥∥ 1Tb T
∑
t=1
ktT∆̃∗

t

∥∥∥∥ > ε

)
.

Similarly as in the proof of (C12), we have

(C17) sup
b∈IT

∥∥∥∥ 1Tb T
∑
t=1
ktT∆̃∗

t

∥∥∥∥ = o p(1).
Since the cardinality of the set |IT |must be o(1), we have supb∈IT

∥∥∥∆̃∗
T

∥∥∥
s p
= o p(1). To

sum up, we continue from (C7):

sup
b∈IT

∥∥∥H∗–1
1,T

∥∥∥
s p

⩽ sup
b∈IT

∥∥∥(H∗
1,T,1

)–1∥∥∥
s p︸ ︷︷ ︸

O p(1) by (C16)

(
1 – sup

b∈IT

∥∥∥∆̃∗
T

∥∥∥
s p︸ ︷︷ ︸

o p(1) by (C17)

)–1
= O p(1).
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This also implies (C13).
Proof of (C14). Let θ1 → θ1 and consider B∗2,T :

B∗2,T =
1
Tb

T
∑
t=1
ktT

(
∂2ℓ1,t(θ1)
∂θ∂θ′

– E
[∂2ℓ1,0(θ1)

∂θ∂θ′

])
(θ1 – θ(t/T)) +

1
Tb

T
∑
t=1
ktTE

[∂2ℓ1,0(θ1)
∂θ∂θ′

]
(θ1 – θ(t/T))

= B∗2,T,1 + B
∗
2,T,2.

For B∗2,T,1, again, similarly as in (C12), we have

P

(
sup
b∈IT

∥∥∥B∗2,T,1∥∥∥ > ε

)
⩽ ∑
b∈IT

P

(∥∥∥B∗2,T,1∥∥∥ > ε

)

⩽ |IT | × sup
b∈IT

P

(∥∥∥B∗2,T,1∥∥∥ > ε

)
= O(bγ+δ),

for some 0 < δ < 1/2. Moving to B∗2,T,2, notice that

∥∥∥B∗2,T,2∥∥∥ ⩽ C
( 1
Tb

T∑
t=1

ktT
( |t – T|

T
)γ)

≈ bγ
∫
C
uγK(u)du = O(bγ),

which holds uniformly over b. Thus, we have

sup
b∈IT

∥∥∥B∗2,T∥∥∥ ⩽ sup
b∈IT

∥∥∥B∗2,T,1∥∥∥ + sup
b∈IT

∥∥∥B∗2,T,2∥∥∥ = O p(bγ),
which implies (C14).

LEMMA C4. Define

L(b) = (θ̂b,T – θ1)
′ωT(θ1) (θ̂b,T – θ1),

A(b) = (θ̂b,T – θ̃T)
′ωT(θ̃T) (θ̂b,T – θ̃T),

where θ̂b,T = θ̂K,b,T = andωT(θ) = ET
(
∂2ℓT+h(θ)
∂θ∂θ′

)
. Suppose that Assumptions B1-B5 hold, we

have

(C18) sup
b∈IT

|L(b) – A(b)
L(b)

| = o p(1).
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PROOF. Let us first expand A(b):

A(b) = (θ̂b,T – θ̃T)
′ωT(θ̃T) (θ̂b,T – θ̃T)

= (θ̂b,T – θ1 + θ1 + θ̃T)
′
(
ωT(θ1) +

[∂ωT(θ1)
∂θ1

(θ̃T – θ1)) . . .
∂ωT(θ1)
∂θ p

(θ̃T – θ1)
]

︸ ︷︷ ︸
ω̃T (θ1) p× p

)

× (θ̂b,T – θ1 + θ1 + θ̃T)

= L(b) – 2(θ̂b,T – θ1)
′ωT(θ1)(θ̃T – θ1) + (θ̃T – θ1)′ωT(θ1)(θ̃T – θ1)

+ (θ̂b,T – θ1)
′ω̃T(θ1)(θ̂b,T – θ1) – 2(θ̂b,T – θ1)

′ω̃T(θ1)(θ̃T – θ1)

+ (θ̃T – θ1)′ω̃T(θ1)(θ̃T – θ1)

= L(b) – 2D1(b) + D′
1 + D2(b) – 2D3(b) + D

′
2,

where

D1(b) = (θ̂b,T – θ1)
′ωT(θ1)(θ̃T – θ1), D′

1 = (θ̃T – θ1)
′ωT(θ1)(θ̃T – θ1),

D2(b) = (θ̂b,T – θ1)
′ω̃T(θ1)(θ̂b,T – θ1), D3(b) = (θ̂b,T – θ1)

′ω̃T(θ1)(θ̃T – θ1),

D′
2 = (θ̃T – θ1)

′ω̃T(θ1)(θ̃T – θ1).

Then, we have

L(b) – A(b)
L(b)

=
2D1(b)
L(b)

–
D′
1

L(b)
–
D2(b)
L(b)

+
D3(b)
L(b)

–
D′
2

L(b)
.

By Lemma C2 and Assumption B5(i), we have

(C19)
∥∥∥θ̃T – θ1∥∥∥ = O p((Tb̃)–1/2).

We will show that

sup
b∈IT

|D1(b)
L(b)

| = o p(1), sup
b∈IT

|D2(b)
L(b)

| = o p(1), sup
b∈IT

|D3(b)
L(b)

| = o p(1),(C20)

sup
b∈IT

|
D′
1

L(b)
| = o p(1), sup

b∈IT
|
D′
2

L(b)
| = o p(1).(C21)

These bounds together with triangular inequality imply (C18).
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Proof of (C20). First, by Lemma C3, we have

(C22) sup
b∈IT

|L(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T – θ1∥∥∥ ∥ωT(θ1)∥s p sup
b∈IT

∥∥∥θ̂b,T – θ1∥∥∥ = O p(r2T,b,δ,γ),
for some 0 < δ < 1/2 and 0 < γ ⩽ 1. Write r̃T,b̃ = (Tb̃)

–1/2, we also have

sup
b∈IT

|D1(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T – θ1∥∥∥ ∥ωT(θ1)∥s p
∥∥∥θ̃T – θ1∥∥∥ = O p(rT,b,δ,γr̃T,b̃),

sup
b∈IT

|D2(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T – θ1∥∥∥ ∥ω̃T(θ1)∥s p sup
b∈IT

∥∥∥θ̂b,T – θ1∥∥∥ = O p(r2T,b,δ,γr̃T,b̃),
sup
b∈IT

|D3(b)| ⩽ sup
b∈IT

∥∥∥θ̂b,T – θ1∥∥∥ ∥ω̃T(θ1)∥s p
∥∥∥θ̃T – θ1∥∥∥ = O p(rT,b,δ,γr̃2T,b̃).

These bounds imply that

sup
b∈IT

|D1(b)
L(b)

| = O p
( r̃T,b̃
rT,b,δ,γ

)
= o p(1),

where
r̃T,b̃

rT,b,δ,γ
→ 0 is guaranteed by Assumption B5. Similarly, we have

sup
b∈IT

|D2(b)
L(b)

| = O p
(
r̃T,b̃

)
= o p(1),

as Tb̃→ ∞. Finally, we have

sup
b∈IT

|D3(b)
L(b)

| = O p
( r̃2

T,b̃
rT,b,δ,γ

)
= o p(1),

where
r̃2
T,b̃

rT,b,δ,γ
→ 0 is again guaranteed by Assumption A(6)).

Proof of (C21). First, it is straightforward to show that

|D′
1| = O p(r̃

2
T,b̃
), |D′

2| = O p(r̃
3
T,b̃
).
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Together with (C22) and following the same reasoning above, we have

sup
b∈IT

|
D′
1

L(b)
| = O p

( r̃2
T,b̃

r2T,b,δ,γ

)
= o p(1), sup

b∈IT
|
D′
2

L(b)
| = O p

( r̃3
T,b̃

r2T,b,δ,γ

)
= o p(1).

Appendix D. Proofs of the theorems

D.1. Proof of Theorem 1

Write θ̂K,b,T = θ̂b,T and ωT(θ1) = ET
(
∂2ℓT+h(θ1)
∂θ∂θ′

)
. It follows from Lemma C1 that, the

infeasible objective function can be written as

(θ̂b,T – θ1)
′ωT(θ1) (θ̂b,T – θ1) = rT,bqT ,

where qT is a scalar O p(1) random variable and rT,b,γ = (Tb)–1/2 + bγ for some 0 < γ ⩽ 1.

The first-order condition of rT,b,γ with respect to b gives b̂ = O p(T
– 1
2γ+1 ). Since the

second order derivative of rT,b,γ is always positive, the optimal bandwidth minimize
the objective function.

D.2. Proof of Theorem 2

Write θ̂K,b,T = θ̂b,T andωT(θ1) = ET
(
∂2ℓT+h(θ1)
∂θ∂θ′

)
. Let

b̂ := argmin
b∈IT

(θ̂b,T – θ̃(1))
′ωT(θ̃(1)) (θ̂b,T – θ̃(1))

be the bandwidth selected according to the feasible criterion. As in the proof of Lemma
B4, the decomposition of A(b) implies that

A(b̂) = L(b̂) – 2D1(b̂) + D′
1 + D2(b̂) – 2D3(b̂) + D

′
2.

Then, we have

A(b̂)
infb∈IT L(b)

=
L(b̂)

infb∈IT L(b)
–

2D1(b̂)
infb∈IT L(b)

+
D2(b̂)

infb∈IT L(b)
–

2D3(b̂)
infb∈IT L(b)

+
D′
1

infb∈IT L(b)
+

D′
2

infb∈IT L(b)

= I1(b̂) + I2(b̂) + I3(b̂) + I4(b̂) + I5 + I6.
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Following (C20) and (C21), we have

I2(b̂) = o p(1), I3(b̂) = o p(1), I4(b̂) = o p(1), I5 = o p(1), I6 = o p(1).

What remains is to show that
I1(b̂)

p−→ 1,

which is equivalent to verify that, for any b, b′ ∈ IT ,

sup
b,b′∈IT

|L(b) – L(b
′) – (A(b) – A(b′))

L(b) + L(b′)
| p−→ 0.

This follows immediately from Lemma B4:

sup
b,b′∈IT

|L(b) – L(b
′) – (A(b) – A(b′))

L(b) + L(b′)
| ⩽ sup

b∈IT
|L(b) – A(b)

L(b)
| + sup

b′∈IT
|L(b

′) – A(b′)
L(b′)

| = o p(1).

D.3. Proof of Theorem 3

In Lemma C1, we show that the local estimator obeys the following expansion:

θ̂K,b,T – θ1 = –H
–1
1,TS1,T –H

–1
1,TB2,T ,

where

H1,T =
1
Tb

T∑
t=1

ktT
∂2ℓt,T

(
θ1
)

∂θ∂θ′
, S1,T =

1
Tb

T∑
t=1

ktT
∂ℓt,T(θ(t/T))

∂θ
, B2,T =

1
Tb

T∑
t=1

ktT
∂2ℓt(θ1)
∂θ∂θ′

(
θ1–θ(t/T)

)
,

and θ1 lies between θ̂K,b,T and θ1. Following the proof of Lemma C1,
∥∥∥H–11,T∥∥∥ = O p(1),∥∥S1,T∥∥ = O p((Tb)–1/2), ∥∥B2,T∥∥ = O p(bγ), when T1/2b1/2+γ → 0, the dominating term is

S1,T . CLT in LemmaC1(ii) holds. Theorem 3(i) follows immediately from continuous
mapping theorem.

When T1/2b1/2+γ → ∞, the dominating term is S2,T . By similar analysis as in the
proof of Lemma C1, we have

b–γS2,T
p−→ µγ,KE

[∂2ℓ1,0(θ1)
∂θ∂θ′

]
C,

whereC = (c1, · · · , ck)
′ is a collection of constant given inAssumptionB1(i). Theorem3(ii)
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follows again from continuous mapping theorem. Theorem 3(iii) follows immediately
by combining the results obtained in (i) and (ii).
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Appendix E. Data appendix

TABLE E1. Data description and variable transformation: USA, Sec. 5.1

Asset prices

FEDFUNDS Effective Federal Funds Rate (Percent) yt

TB3MS 3-Month Treasury Bill: Secondary Market Rate (Percent) yt

GS10 10-Year Treasury Constant Maturity Rate (Percent) yt

GS10TB3Mx 10-Year Treasury Constant Maturity Minus 3-Month Treasury Bill, secondary market (Percent) yt

termspread 10-Year Treasury Constant Maturity Minus Effective Federal Funds Rate (Percent) yt

S&P 500 S&P’s Common Stock Price Index: Composite 100∆ ln yt

VXOCLSx CBOE S&P 100 Volatility Index: VXO yt

Real economic activity

DPIC96 Real Disposable Personal Income (Billions of Chained 2012 Dollars) 100∆ ln yt

GPDIC1 Real Gross Private Domestic Investment, 3 decimal (Billions of Chained 2012 Dollars) 100∆ ln yt

INDPRO Industrial Production Index (Index 2012=100) 100∆ ln yt

CE16OV Civilian Employment (Thousands of Persons) 100∆ ln yt

UNRATE Civilian Unemployment Rate (Percent) yt

LNS14000026 Unemployment Rate - 20 years and over, Women (Percent) yt

HOUST Housing Starts: Total: New Privately Owned Housing Units Started (Thousands of Units) 100∆ ln yt

PERMIT New Private Housing Units Authorized by Building Permits (Thousands of Units) 100∆ ln yt

Price indices

CPIAUCSL Consumer Price Index for All Urban Consumers: All Items (Index 1982-84=100) 100∆ ln yt

CPIAPPSL Consumer Price Index for All Urban Consumers: Apparel (Index 1982-84=100) 100∆ ln yt

CPIENGSL Consumer Price Index for All Urban Consumers: Energy (Index 1982-84=100) 100∆ ln yt

PPIACO Producer Price Index for All Commodities (Index 1982=100) 100∆ ln yt

PCECTPI Personal Consumption Expenditures: Chain-type Price Index (Index 2012=100) 100∆ ln yt

Monetary measures

BOGMBASEREALx Monetary Base (Millions of 1982-84 Dollars), deflated by CPI 100∆ ln yt

M1REAL Real M1 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 100∆ ln yt

M2REAL Real M2 Money Stock (Billions of 1982-84 Dollars), deflated by CPI 100∆ ln yt

Notes: The data are taken from FRED-QD (McCracken, Ng et al. (2021)) and the mnemonics are exactly as in FRED-QD.
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TABLE E2. Data description and variable transformation: Canada, Sec. 5.1

Asset prices

BANK_RATE_L Bank rate yt

TBILL_3M Treasury bills (3 months) yt

GOV_AVG_10pY Governmental bonds (average rate) (10+ years) yt

G_AVG_5.10.Bank_rate Government bonds (5-10 years) - Bank rate yt

G_AVG_10p.TBILL_3M Government Bonds (10+ years) - Treasury Bond (3 months) yt

TSX_CLO Toronto Stock Exchange (close) 100∆ ln yt

Real economic activity

REAL_GDP Real Gross domestic product , chained (2012) dollars 100∆ ln yt

hhold_dispo_income Households disposable income 100∆ ln yt

REAL_I Real Gross fixed capital formation, chained (2012) dollars 100∆ ln yt

CANPROINDQISMEI∗ Production: Industry: Total Industry Excluding Construction for Canada 100∆ ln yt

LFEMTTTTCAQ647S∗ Employed Population: Aged 15 and over: All Persons for Canada 100∆ ln yt

UNEMP_CAN Unemployment rate yt

hstart_CAN House Starts (units) 100∆ ln yt

Price indices

CPI_ALL_CAN Consumption price index (CPI) (all) 100∆ ln yt

IPPI_CAN Industrial production price index (IPPI) (all) 100∆ ln yt

C_PRICE Implicit price index : Final consumption expenditure, 2012 = 100 100∆ ln yt

Monetary measures

MBASE1 Monetary base 100∆ ln yt

CRED_BUS_cb Business loans, Chartered banks only 100∆ ln yt

CRED_HOUS_cb Personal loans, Chartered banks only 100∆ ln yt

Notes: The mnemonics with an asterisk indicate that the variables are taken from Federal Reserve Economic Data (FRED). All
the other variables are taken from Stevanovic et al. (2021).
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TABLE E3. Data description: Sec. 5.2

Variable Data source Variable description

CatFin Allen, Bali, and Tang (2012) measure of aggregate systemic risk

Default spread FRED difference between yields on BAA and AAA corporate bonds

TED spread GFD difference between 3-month LIBOR and 3-month T-bill interest rates

Term spread GFD difference between yields on the ten year and the 3-month treasury bond

Slope factor Liu and Wu (2021) slope factor of the yield curve (1-120 month)

VIX FRED Chicago Board Options Exchange’s CBOE volatility index

Stock return FRED S&P500 composite index return

Notes: FRED refers to Federal Reserve Economic Data. GFD refers to Global Financial Database.
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TABLE E4. Data description and variable transformation: Sec. 5.3

Variable Data source Variable description Transformation

United States

stock return CRSP S&P500 value-weighted index return yt

treasury bill FRED 3-month treasury bill: secondary market rate yt

spread GFD differences between 5-year government bond yield and 3-month treasury bill yt

inflation FRED changes of Consumer price index for all urban consumers: all items in U.S. city average 100∆ ln( yt)

growth FRED changes of Industrial production: total index 100∆ ln( yt)

Canada

stock return GFD S&P/TSX-300 total return index 100∆ ln( yt)

treasury bill GFD 3-month treasury bill yield yt

spread GFD differences between 10-year government bond yield and 3-month treasury bill yt

inflation FRED changes of Consumer price index: all items: city: total 100∆ ln( yt)

growth FRED changes of Production: industry: total industry: total industry excluding construction 100∆ ln( yt)

France

stock return GFD CAC all-tradable total return index 100∆ ln( yt)

treasury bill GFD 3-month treasury bill yield yt

spread GFD differences between 10-year government bond yield and 3-month treasury bill yt

inflation FRED changes of Consumer price index of all items 100∆ ln( yt)

growth FRED changes of Production of total industry 100∆ ln( yt)

Germany

stock return GFD CDAX total return index 100∆ ln( yt)

treasury bill GFD 3-month treasury bill yield yt

spread GFD differences between 5-year government bond yield and 3-month treasury bill yt

inflation FRED changes of Consumer price index: all items: total 100∆ ln( yt)

growth FRED changes of Production: industry: total industry: total industry excluding construction 100∆ ln( yt)

Australia

stock return GFD ASX accumulation index-all ordinaries 100∆ ln( yt)

treasury bill GFD 3-month treasury bill yield yt

spread GFD differences between 10-year government bond yield and 3-month treasury bill yt

inflation FRED changes of Consumer price index: all items: total 100∆ ln( yt)

growth FRED changes of Production: industry: total industry: total industry excluding construction 100∆ ln( yt)

Notes: CRSP refers to Center for Research in Security Prices. FRED refers to the database maintained by the Federal Reserve
Bank of St.Louis. GFD refers to the Global Financial Database. For Australia, CPI and industrial production are only available at a
quarterly frequency.
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TABLE E5. Data description: Sec. 5.4

Country Data source Sample period Ni

United States Liu and Wu (2021) 1961M6-2022M12 60

Canada Bank of Canada 1986M1-2022M12 20

United Kingdom Bank of England 1970M1-2022M12 9

Japan Ministry of Finance 1980M8-2022M12 5

Notes: Ni is the number of variables (different maturities, up to 5 years) available in each country.

Appendix F. Additional tables and figures
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TABLE F1. Forecasting performance for inflation in the United States: 2020Q1-2023Q1

UCSV 5.351

AR(4) 0.855

Non-local R = 40 Opt-R Opt-G Opt-E

Asset prices

FEDFUNDS 0.878 1.150 1.092 1.084 1.078

TB3MS 0.874 1.163 1.091 1.099 1.091

GS10 0.864 1.079 1.072 1.062 1.039

GS10TB3Mx 0.851 1.163 1.102 1.081 1.115

term spread 0.850 1.168 1.111 1.092 1.128

S&P 500 0.859 1.262 1.263 1.075 1.243

VXOCLSx 0.856 1.255 1.242 1.170 1.297

Real economic activity

DPIC96 0.863 1.276 1.206 1.109 1.228

GPDIC1 0.888 1.477 1.451 1.280 1.694

INDPRO 1.090 1.651 1.697 1.453 1.929

CE16OV 2.658 6.570 7.465 4.542 10.500

UNRATE 0.934 1.090 0.917 1.023 0.906

LNS14000026 0.922 1.056 0.954 0.996 0.900

HOUST 0.865 1.099 1.110 1.089 1.107

PERMIT 0.853 1.240 1.188 1.114 1.208

Price indices

CPIAUCSL 0.885 1.221 1.178 1.088 1.189

CPIAPPSL 1.051 1.199 1.050 1.108 1.149

CPIENGSL 0.871 1.172 1.139 1.080 1.124

PPIACO 0.881 1.301 1.286 1.109 1.256

PCECTPI 0.863 1.235 1.147 1.106 1.214

Monetary measures

BOGMBASEREALx 0.916 1.045 1.126 1.197 1.100

M1REAL 2.208 2.517 7.956 6.290 7.311

M2REAL 0.968 1.647 1.547 1.304 1.716

Notes: The description of predictors is detailed in Table E1. See Table 3 for details on the implementation.
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TABLE F2. Forecasting performance for inflation in Canada: 2020Q1-2023Q1

UCSV 51.517

AR(4) 0.826

Non-local R = 40 Opt-R Opt-G Opt-E

Asset prices

BANK_RATE_L 0.827 0.829 0.920 0.799 0.851

TBILL_3M 0.828 0.875 0.993 0.807 0.902

GOV_AVG_10pY 0.832 0.853 0.894 0.825 0.890

G_AVG_5.10.Bank_rate 0.829 0.964 0.931 0.833 0.984

G_AVG_10p.TBILL_3M 0.828 0.923 0.941 0.834 0.936

TSX_CLO 0.816 0.954 0.960 0.822 1.070

Real economic activity

REAL_GDP 1.005 1.583 1.145 1.021 1.598

hhold_dispo_income 0.794 0.899 0.944 0.854 0.949

REAL_I 0.850 1.054 1.119 0.954 1.143

CANPROINDQISMEI 0.839 0.916 0.817 0.780 0.907

LFEMTTTTCAQ647S 1.465 3.180 3.191 2.256 3.727

UNEMP_CAN 0.842 0.679 0.768 0.704 0.808

hstart_CAN 0.823 0.940 0.943 0.829 0.960

Price indices

CPI_ALL_CAN 0.837 0.902 0.947 0.775 0.912

IPPI_CAN 0.832 0.942 0.954 0.872 0.968

C_PRICE 0.785 1.008 1.022 0.908 1.043

Monetary measures

MBASE1 2.703 21.638 59.313 11.931 67.582

CRED_BUS_cb 0.827 0.955 0.939 0.843 0.994

CRED_HOUS_cb 0.860 0.833 0.775 0.787 0.870

Notes: The description of predictors is detailed in Table E2. See Table 3 for details on the implementation.
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