OPTIMAL FORECASTING UNDER

PARAMETER INSTABILITY

Yu Bai Monash University

November 1, 2023

Available at

https://jdluxun1.github.io/research/Yu_Monash_JMP.pdf

MOTIVATING EXAMPLE

• Predictive regression under parameter instability

$$
y_{t+1} = X_t' \theta_t + \varepsilon_{t+1}, \quad t = 1, 2, \cdots, T-1.
$$
 (1)

- Under mean squared error (MSE) loss:
	- $L(y_{T+1}, \hat{y}_{T+1|T}) = (y_{T+1} \hat{y}_{T+1|T})^2$, the optimal forecast is $\hat{y}_{T+1|T} = X'_T \hat{\theta}_T.$
- Rolling window forecast scheme:

$$
\hat{\theta}_T = \Big(\sum_{t=T-R_0+1}^{T-1} X_t X_t'\Big)^{-1} \Big(\sum_{t=T-R_0+1}^{T-1} X_t y_{t+1}\Big),\tag{2}
$$

where R_0 is the window size.

MOTIVATING EXAMPLE

• [\(2\)](#page-1-0) can be written more generally as

$$
\hat{\theta}_{b,T} = \left(\sum_{t=1}^{T-1} k_{tT} X_t X_t'\right)^{-1} \left(\sum_{t=1}^{T-1} k_{tT} X_t y_{t+1}\right),\tag{3}
$$

where

- $k_{tT} = K((t T)/(Tb))$ is the weighting function;
- b = b_T > 0 is a tuning parameter satisfying $b \to 0$, T $b \to \infty$ as $T \rightarrow \infty$.

• If
$$
K(u) = 1_{\{-1 \le u \le 0\}}
$$
, (3) becomes (2) with $R_0 = [Tb]$.

RESEARCH QUESTION

- (1) What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
- (2) How to select the tuning parameter b optimally?
- **3** Is the weighting function $K(u) = 1$ _{-1<u<0} always the best choice?

RESEARCH QUESTION

- (1) What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
- (2) How to select the tuning parameter b optimally?
- **3** Is the weighting function $K(u) = 1$ _{-1<u<0} always the best choice?

RESEARCH QUESTION

- (1) What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
- (2) How to select the tuning parameter b optimally?
- **(3)** Is the weighting function $K(u) = 1$ _{-1<u<0} always the best choice?

ESTIMATION UNDER PARAMETER INSTABILITY

THE ESTIMATOR

- $\text{ }\text{ }\text{ }$
- \cdot X_t : predictors
- $\, \hat{\bm{\mathcal{y}}}_{t+h|t}(\theta)$: forecast
- $\ell_t(\theta) = L(y_{t+h}, \hat{y}_{t+h|t}(\theta))$: loss function
- Parameter estimates:

$$
\hat{\theta}_{K,b,T} = \underset{\theta \in \Theta}{\arg \min} \frac{1}{Tb} \sum_{t=1}^{T} k_{tT} \ell_t(\theta), \tag{4}
$$

where

- $\; k_{t\overline{t}}$ = K $\bigl((t$ T)/(Tb) $\bigr),$ K(\cdot) is a weighting function;
- b = $b_T > 0$ is the tuning parameter satisfying $b \to 0$, T $b \to \infty$ as $T \rightarrow \infty$.

- We adopt the framework of locally stationary: Karmakar et al. (2022, JoE), Dahlhaus et al. (2019, Bernoulli), etc..
- We assume that

$$
\theta_{t,T} = \Theta(t/T) = \Theta(u), \ \ \Theta(\cdot) : (0,1] \longrightarrow \Theta.
$$

 $\cdot \,$ What are the minimal conditions on θ(\cdot) to ensure that $\hat{\theta}_{\mathsf{K},\mathsf{b},\mathsf{T}} \stackrel{p}{\to} \theta_1?$

• Hölder-type continuity condition:

$$
|\theta_{\ell}(t/T) - \theta_{\ell}(s/T)| \leq c_{\ell} \left(\frac{|t-s|}{T} \right)^{\gamma}, t, s = 1, 2, \cdots, T,
$$

for each $\ell = 1, 2, \cdots, k$ where $0 \leq \gamma \leqslant 1$ and c_{ℓ} is a positive bounded constant.

Example

- **□** Abrupt structural change: $θ_{\ell}(·) = α_T 1_{\{t/T > e\}}$, where $e ∈ (0, 1]$ and $a_T = o(1)$ as $T \rightarrow \infty$;
- ② Smooth structural change: $θ_{\ell}(\cdot)$ is twice continuously differentiable;
- **3** Realization of persistent bounded stochastic processes: $\theta_{\ell,t} = \frac{1}{\sqrt{2\pi}}$ $\overline{\overline{\tau}}^{\nu_t}$ where $(1 - L)^{d-1}v_t \stackrel{i.i.d.}{\sim} \mathcal{N}.$

• Hölder-type continuity condition:

$$
|\theta_{\ell}(t/T) - \theta_{\ell}(s/T)| \leq c_{\ell} \left(\frac{|t-s|}{T} \right)^{\gamma}, t, s = 1, 2, \cdots, T,
$$

for each $\ell = 1, 2, \cdots, k$ where $0 \leq \gamma \leqslant 1$ and c_{ℓ} is a positive bounded constant.

Example

- **□** Abrupt structural change: $θ_{\ell}(·) = α_T \mathbb{1}_{\{t/T > e\}}$, where $e ∈ (0, 1]$ and $a_T = o(1)$ as $T \rightarrow \infty$;
- © $\;$ Smooth structural change: $θ_{\ell}(\cdot)$ is twice continuously differentiable;
- **3** Realization of persistent bounded stochastic processes: $\theta_{\ell,t} = \frac{1}{\sqrt{2\pi}}$ $\overline{\overline{\tau}}^{\nu_t}$ where $(1 - L)^{d-1}v_t \stackrel{i.i.d.}{\sim} \mathcal{N}.$

• Hölder-type continuity condition:

$$
|\theta_{\ell}(t/T) - \theta_{\ell}(s/T)| \leq c_{\ell} \left(\frac{|t-s|}{T} \right)^{\gamma}, t, s = 1, 2, \cdots, T,
$$

for each $\ell = 1, 2, \cdots, k$ where $0 \leq \gamma \leqslant 1$ and c_{ℓ} is a positive bounded constant.

Example

- **□** Abrupt structural change: $θ_{\ell}(·) = α_T \mathbb{1}_{\{t/T > e\}}$, where $e ∈ (0, 1]$ and $a_T = o(1)$ as $T \rightarrow \infty$;
- ② Smooth structural change: $θ_{\ell}(\cdot)$ is twice continuously differentiable;
- © Realization of persistent bounded stochastic processes: θ $_{\ell,t}$ = $\frac{1}{\sqrt{2}}$ $\overline{\overline{\tau}}^{\nu_t}$ where $(1 - L)^{d-1}v_t \stackrel{i.i.d.}{\sim} \mathcal{N}.$

• It can be shown that

$$
\|\hat{\theta}_{K,b,T}-\theta_1\|=O_p((Tb)^{-1/2}+b^{\gamma}).
$$

• Easier to estimate if γ is large.

OUT-OF-SAMPLE FORECASTING

END-OF-SAMPLE RISK

- Two inputs \Rightarrow K and b
- End-of-sample risk:

$$
E_T(\ell_{T+h}(\hat{\theta}_{K,b,T})) \approx R_T^1 + R_T^2 + R_T^3,
$$

where

$$
\begin{aligned} R_T^1 & = E_T \left(\ell_{T+h}(\theta_1) \right) \\ R_T^2 & = E_T \left(\frac{\partial \ell_{T+h}(\theta_1)}{\partial \theta'} \right) \left(\hat{\theta}_{K,b,T} - \theta_1 \right) \\ R_T^3 & = \frac{1}{2} (\hat{\theta}_{K,b,T} - \theta_1)' E_T \left(\frac{\partial^2 \ell_{T+h}(\overline{\theta}_1)}{\partial \theta \partial \theta'} \right) \left(\hat{\theta}_{K,b,T} - \theta_1 \right), \end{aligned}
$$

and $\overline{\theta}_1$ lies between $\hat{\theta}_{\mathcal{K},b,\mathcal{T}}$ and $\theta_1.$

DECOMPOSITION

 \cdot $\,R^1_T$: does not involve parameter estimates

•
$$
R_T^2
$$
: drops out if $E_T\left(\frac{\partial \ell_{T+h}(\theta_1)}{\partial \theta'}\right) = 0$
- ε_{t+h} are uncorrelated \rightarrow Back to example

- $\;\cdot\;$ Minimizing the conditional expected loss is equivalent to minimize $R^3_{\cal T}$.
- Define the regret risk Hirano and Wright (2017, ECTA):

$$
R_T(K,b) = (\hat{\theta}_{K,b,T} - \theta_1)' E_T \left(\frac{\partial^2 \ell_{T+h}(\overline{\theta}_1)}{\partial \theta \partial \theta'} \right) (\hat{\theta}_{K,b,T} - \theta_1).
$$
 (5)

• Select *b* by minimizing R^3

$$
\hat{b} := \underset{b \in I_T}{\arg \min} \; (\hat{\theta}_{b,T} - \theta_1)' \, \omega_T(\overline{\theta}_1) \, (\hat{\theta}_{b,T} - \theta_1). \tag{6}
$$

where $I_T = [b, \overline{b}]$ is the candidate choice set of b.

Theorem

Under certain regularity conditions, the optimal tuning parameter \hat{b} obtained by minimizing [\(6\)](#page-16-0) is of order $T^{-\tfrac{1}{2\gamma+1}}$ in probability for some 0 < $\gamma \leqslant 1.$

- • [\(6\)](#page-16-0) is not feasible since it involves θ_1 .
- If $\theta(.)$ is twice continuously differentiable, we can approximate $\theta(1)$ by

$$
\theta(t/T) \approx \theta + \theta' \left(\frac{t - T}{T}\right) + \frac{\theta''}{2} \left(\frac{t - T}{T}\right)^2, \tag{7}
$$

where $\theta = \theta_1$, $\theta' = \theta_1^{(1)}$ $\binom{1}{1}$ and $\theta'' = \theta^{(2)}(c)$, where c lies between 1 and t/T .

[More on example](#page-43-0)

• Then, the local-linear estimator is defined by the minimizer of

$$
\min_{(\theta,\theta')\in\Theta\times\Theta'}\ \frac{1}{T\tilde{b}}\sum_{t=1}^T\tilde{k}_{tT}\ell_t\Big(\theta+\theta'(t/T-1)\Big),\tag{8}
$$

where

$$
- \tilde{k}_{t\overline{t}} = K\left(\frac{t-\overline{t}}{T\tilde{b}}\right);
$$

- \tilde{b} is such that $\tilde{b} \to 0$ and $T\tilde{b} \to \infty$ as $T \to \infty$.

• This leads to the following feasible selection criteria:

$$
\hat{b} := \underset{b \in I_T}{\arg \min} \; (\hat{\theta}_{b,T} - \tilde{\theta}_T)' \, \omega_T(\tilde{\theta}_T) \, (\hat{\theta}_{b,T} - \tilde{\theta}_T). \tag{9}
$$

where

 $\sim \widetilde{\theta}_\mathcal{T}$: first $k \times 1$ elements of the minimizer of [\(8\)](#page-17-0).

Theorem

Under certain regularity conditions, choosing \hat{b} by [\(9\)](#page-19-0) is asymptotically optimal in the sense that

$$
(\hat{\theta}_{b,T} - \tilde{\theta}_{T})' \omega_{T}(\tilde{\theta}_{T}) (\hat{\theta}_{b,T} - \tilde{\theta}_{T}) \asymp \inf_{b \in I_{T}} (\hat{\theta}_{b,T} - \theta_{1})' \omega_{T}(\theta_{1}) (\hat{\theta}_{b,T} - \theta_{1})
$$

where $\tilde{\theta}_I$ is the local linear estimator from [\(8\)](#page-17-0) with tuning parameter \tilde{b} .

• Typical choices of weighting function:

$$
K_1(u) = 1_{\{-1 < u < 0\}}, \quad K_2(u) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{u^2}{2}\right) 1_{\{u < 0\}},
$$
\n
$$
K_3(u) = \frac{3}{2}(1 - u^2) 1_{\{-1 < u < 0\}}.
$$

- All data are used for $K_2(u)$, but not for $K_1(u)$ and $K_3(u)$. \rightarrow [G I](#page-44-0)
	- Kapetanios et al. (2019, JAE), Dendramis et al. (2020, JRSSa): find $K₂(u)$ is the best
	- Farmer et al. (2023, JF): recommend to use $K_3(u)$
- What types of weighting function shall we choose?

• [\(4\)](#page-7-0) admits the following decomposition:

$$
\hat{\theta}_{K,b,T} - \theta_1 = -H_{1,T}^{-1}(\theta_1) \Big(\underbrace{S_{1,T}}_{variance} + \underbrace{B_{2,T}}_{bias} \Big),
$$

where

$$
\begin{aligned} H_{1,T}(\theta_1) &= \frac{1}{Tb} \sum_{t=1}^T k_{tT} \frac{\partial^2 \ell_t(\theta_1)}{\partial \theta \partial \theta'}, \quad S_{1,T} = \frac{1}{Tb} \sum_{t=1}^T k_{tT} \frac{\partial \ell_t(\theta(t/T))}{\partial \theta}, \\ B_{2,T} &= \frac{1}{Tb} \sum_{t=1}^T k_{tT} \frac{\partial^2 \ell_t(\overline{\theta}_1)}{\partial \theta \partial \theta'} \left(\theta_1 - \theta(t/T)\right), \end{aligned}
$$

and $\overline{\theta}_1$ lies between $\hat{\theta}_{\mathcal{K},b,\mathcal{T}}$ and $\theta_1.$

 $\ ^{0}$ If $\mathit{T}^{1/2}b^{1/2+\gamma}\rightarrow 0,$ we have

$$
Tb \cdot R_T(K,b) \stackrel{d}{\longrightarrow} \Phi_{0,K} \Sigma_1^{1/2} Z' \omega_T(\theta_1) Z \Sigma_1^{1/2},
$$

where $\phi_{0,K}$ = $\int_{\mathcal{C}} K^2(u)du, Z \sim \mathcal{N}(0, I_k)$ and Σ_1 is defined as in Lemma $C1$:

 \Box If $\mathcal{T}^{1/2}b^{1/2+\gamma} \rightarrow \infty$, we have

$$
b^{-2\gamma}\cdot R_T(K,b)\stackrel{p}{\longrightarrow} \mu^2_{\gamma,K}\mathcal{C}'\omega_T(\theta_1)\mathcal{C},
$$

where $\mu_{\gamma,K}$ = $\int u^\gamma K(u) du$ and $\mathcal{C} = (c_1,\cdots,c_{\overline{k}})'$ is a collection of Hölder constant;

$$
\begin{array}{ll}\n\textcircled{\tiny{\textbf{m}}}\\
\textcircled{\tiny{\textbf{m}}}\quad \text{If } \textsf{T}^{1/2}b^{1/2}\asymp b^{-\gamma}, \text{we have}\n\end{array}
$$

 $\sqrt{10}$

$$
Tb \cdot \left(R_T(K,b)+b^{2\gamma}\mu_{\gamma,K}^2\mathcal{C}'\omega_T(\theta_1)\mathcal{C}\right) \stackrel{d}{\longrightarrow} \Phi_{0,K}\Sigma_1^{1/2}Z'\omega_T(\theta_1)Z\Sigma_1^{1/2},
$$

where $\mu_{\gamma,K}$, C and $\phi_{0,K}$ are defined as in (i) and (ii).

WHAT HAVE WE LEARNED?

- Reflects the usual bias-variance trade-off:
	- $-$ When variance dominates $\mathit{T^{1/2}b^{1/2+\gamma}}\rightarrow 0,$ choose a weighting function which has smallest $\phi_{0,K}$;
	- Otherwise, $\mu_{\gamma,K}$ also plays a role.
- Assume $\gamma = 1$:
	- \Rightarrow May fall into cases (ii) and (iii), but at the slowest rate

MONTE CARLO EXPERIMENTS

SUMMARY OF THE RESULTS

- • We consider DGPs used in Pesaran and Timmermann (2007, JoE) and Inoue et al. (2017, JoE).
- Types of time variation include all considered in \rightarrow [Example](#page-9-0)
- We find that our methods are useful: results are robust under various types of structural change.
- Using all data and downweighting them $(K_2(u))$ is generally preferred.

APPLICATION: BOND RETURN PREDICTABILITY

TARGET

 \bullet (log) Yield of an *n*-year bond:

$$
y_t^{(n)} = -\frac{1}{n} p_t^{(n)},
$$

where

 $- p_t^{(n)}$ $t^{(n)}$ is the log price of the *n*-year zero-coupon bond at time t.

• Holding-period return:

$$
r_{t+12}^{(n)} = p_{t+12}^{(n-1)} - p_t^{(n)}.
$$

• The excess return is

$$
rx_{t+12}^{(n)} = r_{t+12}^{(n)} - y_t^{(1)},
$$

where

 $- y_t^{(1)}$ $t⁽¹⁾$ is the one-year risk-free rate.

PREDICTIVE REGRESSIONS

(b) Fama-Bliss (FB) univariate

$$
rx_{t+12}^{(n)} = \alpha + \beta fs_t^{(n)} + \varepsilon_{t+12};
$$

(iii) Cochrane-Piazzesi (CP) univariate

$$
rx_{t+12}^{(n)} = \alpha + \beta CP_t + \varepsilon_{t+12};
$$

(iii) Fama-Bliss and Cochrane-Piazzesi predictors

$$
rx_{t+12}^{(n)} = \alpha + \beta_1 fs_t^{(n)} + \beta_2 CP_t + \varepsilon_{t+12}.
$$

[More details](#page-45-0)

- Bond markets:
	- United States (Liu and Wu (2021, JFE))
	- Canada (Bank of Canada)
	- United Kingdom (Bank of England)
	- Japan (Ministry of Finance Japan)
- Sample period: 1986M1 2022M12
- Maturity up to 5 years

• $n = 2, 3, 4, 5$

FORECAST EVALUATION

- Benchmark: 3 PCs from global yield curve
- Starts from 2000M1
- MSE loss:

$$
R(K,b) = (\hat{\theta}_{K,b,T} - \theta_1)' (X_T X_T') (\hat{\theta}_{K,b,T} - \theta_1)
$$
 (10)

- Set $b = cT^{-1/3}$, c ranges from 1 to 7 with a course grid of width 0.1
- $\tilde{b} = 1.067^{-1/5}$
- Weighting functions:

$$
\begin{aligned} K_1(u) &= \mathbb{1}_{\{-1 < u < 0\}}, \ \ K_2(u) &= \frac{2}{\sqrt{2\pi}} \exp\Big(-\frac{u^2}{2}\Big) \mathbb{1}_{\{u < 0\}}, \\ K_3(u) &= \frac{3}{2}(1 - u^2) \mathbb{1}_{\{-1 < u < 0\}}. \end{aligned}
$$

RESULTS

- [details](#page-46-0)
	- VERY PROMISING: sizable and sometimes significant improvement over the benchmark forecasts
		- particularly when $K_3(u)$ is used with optimal tuning parameter selection
	- Japan: $K_2(u)$ is better, but differences are small
	- Non-local estimator ?
		- Not useful, particularly for Canada

- What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
	- A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
	- A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = 1$ _{-1<l/>s(x)} always the best choice?
	- A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
	- A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
	- A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = 1$ _{-1<l/>s(x)} always the best choice?
	- A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
	- A: Hölder-type continuity condition
- \bullet How to select the tuning parameter b optimally?
	- A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = 1$ _{-1<l/>s(x)} always the best choice?
	- A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
	- A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
	- A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = 1$ _{-1<l/>s(x)} always the best choice?
	- A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
	- A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
	- A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = 1$ _{-1<l/>s(x)} always the best choice?
	- A: No, properties of TVP, rolling window selection outperformed

- What types of time variation are allowable for using estimator like [\(3\)](#page-2-0)?
	- A: Hölder-type continuity condition
- How to select the tuning parameter b optimally?
	- A: minimizing regret risk, asymptotic optimality
- Is the weighting function $K(u) = 1$ _{-1<l/>s(x)} always the best choice?
	- A: No, properties of TVP, rolling window selection outperformed

APPENDIX SLIDES

Notes: black line: θ(t/T) = 0.9 – $\frac{1}{T^{0.2}}$ 1(t \geqslant 0.57 + 1); blue line: θ(t/T) = 0.9 – 0.4(t/T)²; red line: θ(t/T) is a realization from the process $\frac{1}{\sqrt{T}}v_t$, where $\Delta v_t \stackrel{i.i.d.}{\sim} (0,1)$.

$$
\quad \text{ }\overline{\theta}_{\ell,t}\text{ satisfies:}
$$

$$
|\overline{\theta}_{\ell,t} - \overline{\theta}_{\ell,s}| \leq \xi_{\ell,ts} \left(\frac{|t-s|}{T}\right)^{\gamma}
$$

where

- ξ_{ℓ,ts} has a thin-tailed distribution:
\n
$$
\mathbb{P}\left(|\xi_{\ell,ts}| > \omega\right) \leq \exp\left(-c_0|\omega|^{\alpha}\right), \omega > 0, \text{ for some } c_0 > 0, \alpha > 0
$$

Example

suppose that $\theta(t/T)$ is a realization of a bounded random walk process: $\frac{1}{\sqrt{2}}$ $\frac{1}{T}v_t$, where $\Delta v_t \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}$. Simple algebra gives $\theta(t/T) = \sqrt{\frac{t}{T}}$ $rac{t}{\overline{T}}\frac{1}{\sqrt{T}}$ $_{\overline{t}}\mathbf{\nu}_{t}.$ We know that $\frac{1}{\sqrt{2}}$ $\frac{1}{t}v_t = O_p(1)$, this implies that $\theta(t/T) = C_t \sqrt{\frac{t}{T}}$ $\frac{l}{l}$, where C_t is a positive bounded constant.

Notes: Shape of the weighting function with $T = 500$, $b = cT^{-1/3}$ with c equal to 1,2.5 and 5.

• The Fama-Bliss (FB) forward spreads are given by

$$
fs_t^{(n)} = f_t^{(n)} - y_t^{(1)} = p_t^{(n-1)} - p_t^{(n)} - y_t^{(1)}.
$$

• The Cochrane-Piazzesi (CP) factor is constructed as the linear combination of forward rates:

$$
CP_t = \hat{\gamma}' \mathbf{f}_t,
$$

where

-
$$
\mathbf{f}_t = (y_t^{(1)}, f_t^{(2)}, f_t^{(3)}, f_t^{(4)}, f_t^{(5)})';
$$

\n- The coefficient vector $\hat{\gamma}$ is estimated from a predictive regression
\nof $\frac{1}{4} \sum_{n=2}^{5} rx_{t+12}^{(n)}$ on $[1 \mathbf{f}_t']'$.

Table 1: Out-of-sample forecasting performance on bond returns: United States

Table 2: Out-of-sample forecasting performance on bond returns: Canada

Table 3: Out-of-sample forecasting performance on bond returns: UK

Table 4: Out-of-sample forecasting performance on bond returns: Japan