
OPTIMAL FORECASTING UNDER
PARAMETER INSTABILITY

Yu Bai
Monash University

November 1, 2023

Available at

https://jdluxun1.github.io/research/Yu_Monash_JMP.pdf

https://jdluxun1.github.io/research/Yu_Monash_JMP.pdf


MOTIVATING EXAMPLE

• Predictive regression under parameter instability

yt+1 = X′tθt + εt+1, t = 1, 2, · · · , T – 1. (1)

• Under mean squared error (MSE) loss:
L( yT+1, ŷT+1|T) = ( yT+1 – ŷT+1|T)2, the optimal forecast is
ŷT+1|T = X′T θ̂T .

• Rolling window forecast scheme:

θ̂T =
( T–1∑
t=T–R0+1

XtX′t
)–1( T–1∑

t=T–R0+1
Xt yt+1

)
, (2)

where R0 is the window size.
Return to main slide



MOTIVATING EXAMPLE

• (2) can be written more generally as

θ̂b,T =
( T–1∑
t=1

ktTXtX′t
)–1( T–1∑

t=1
ktTXt yt+1

)
, (3)

where
– ktT = K

(
(t – T)/(Tb)

)
is the weighting function;

– b = bT > 0 is a tuning parameter satisfying b→ 0, Tb→ ∞ as
T → ∞.

• If K(u) = 1{–1<u<0}, (3) becomes (2) with R0 = ⌊Tb⌋.



RESEARCH QUESTION

(1) What types of time variation are allowable for using estimator like (3)?
(2) How to select the tuning parameter b optimally?
(3) Is the weighting function K(u) = 1{–1<u<0} always the best choice?
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ESTIMATION UNDER PARAMETER INSTABILITY



THE ESTIMATOR

• yt+h: target

• Xt: predictors

• ŷt+h|t(θ): forecast

• ℓt(θ) = L( yt+h, ŷt+h|t(θ)): loss function

• Parameter estimates:

θ̂K,b,T = arg min
θ∈Θ

1
Tb

T∑
t=1

ktTℓt(θ), (4)

where
– ktT = K

(
(t – T)/(Tb)

)
, K(·) is a weighting function;

– b = bT > 0 is the tuning parameter satisfying b→ 0, Tb→ ∞ as
T → ∞.



ON CONSISTENCY

• We adopt the framework of locally stationary: Karmakar et al. (2022,
JoE), Dahlhaus et al. (2019, Bernoulli), etc..

• We assume that

θt,T = θ
(
t/T

)
= θ(u), θ(·) : (0, 1] −→ Θ.

• What are the minimal conditions on θ(·) to ensure that θ̂K,b,T
p→ θ1?



ON CONSISTENCY
• Hölder-type continuity condition:

|θℓ(t/T) – θℓ(s/T)| ⩽ cℓ
( |t – s|

T

)γ
, t, s = 1, 2, · · · , T,

for each ℓ = 1, 2, · · · , k where 0 < γ ⩽ 1 and cℓ is a positive bounded
constant.

Example
(1) Abrupt structural change: θℓ(·) = aT1{t/T>e}, where e ∈ (0, 1] and

aT = o(1) as T → ∞;
(2) Smooth structural change: θℓ(·) is twice continuously differentiable;
(3) Realization of persistent bounded stochastic processes: θℓ,t = 1√

T
vt,

where (1 – L)d–1vt
i.i.d.
∼ N.
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ON CONSISTENCY

• It can be shown that

∥θ̂K,b,T – θ1∥ = O p
(

(Tb)–1/2 + bγ
)

.

• Easier to estimate if γ is large.



OUT-OF-SAMPLE FORECASTING



END-OF-SAMPLE RISK

• Two inputs ⇒ K and b

• End-of-sample risk:

ET
(
ℓT+h(θ̂K,b,T)

)
≈ R1

T + R2
T + R3

T ,

where

R1
T = ET

(
ℓT+h(θ1)

)
R2
T = ET

(∂ℓT+h(θ1)
∂θ′

)
(θ̂K,b,T – θ1)

R3
T = 1

2 (θ̂K,b,T – θ1)′ ET
(∂2ℓT+h(θ1)

∂θ∂θ′

)
(θ̂K,b,T – θ1),

and θ1 lies between θ̂K,b,T and θ1.



DECOMPOSITION

• R1
T : does not involve parameter estimates

• R2
T : drops out if ET

(
∂ℓT+h(θ1)

∂θ′

)
= 0

– εt+h are uncorrelated Back to example

• Minimizing the conditional expected loss is equivalent to minimize R3
T .

• Define the regret risk Hirano and Wright (2017, ECTA):

RT(K, b) = (θ̂K,b,T – θ1)′ ET
(∂2ℓT+h(θ1)

∂θ∂θ′

)
(θ̂K,b,T – θ1). (5)



SELECTION OF THE TUNING PARAMETER b

• Select b by minimizing R3
T :

b̂ := arg min
b∈IT

(θ̂b,T – θ1)′ωT
(
θ1

)
(θ̂b,T – θ1). (6)

where IT = [b, b] is the candidate choice set of b.

Theorem
Under certain regularity conditions, the optimal tuning parameter b̂ obtained
by minimizing (6) is of order T– 1

2γ+1 in probability for some 0 < γ ⩽ 1.



SELECTION OF THE TUNING PARAMETER b

• (6) is not feasible since it involves θ1.

• If θ(·) is twice continuously differentiable, we can approximate θ(1) by

θ(t/T) ≈ θ + θ′
( t – T
T

)
+ θ

′′

2
( t – T
T

)2, (7)

where θ = θ1, θ′ = θ
(1)
1 and θ

′′
= θ(2)(c), where c lies between 1 and t/T.

More on example



SELECTION OF THE TUNING PARAMETER b

• Then, the local-linear estimator is defined by the minimizer of

min
(θ,θ′)∈Θ×Θ′

1
Tb̃

T∑
t=1

k̃tTℓt
(
θ + θ′(t/T – 1)

)
, (8)

where
– k̃tT = K

(
t–T
Tb̃

)
;

– b̃ is such that b̃→ 0 and Tb̃→ ∞ as T → ∞.



SELECTION OF THE TUNING PARAMETER b
• This leads to the following feasible selection criteria:

b̂ := arg min
b∈IT

(θ̂b,T – θ̃T)′ωT
(
θ̃T

)
(θ̂b,T – θ̃T). (9)

where
– θ̃T : first k × 1 elements of the minimizer of (8).

Theorem

Under certain regularity conditions, choosing b̂ by (9) is asymptotically
optimal in the sense that

(θ̂b,T – θ̃T)′ωT
(
θ̃T

)
(θ̂b,T – θ̃T) ≍ inf

b∈IT
(θ̂b,T – θ1)′ωT

(
θ1

)
(θ̂b,T – θ1)

where θ̃T is the local linear estimator from (8)with tuning parameter b̃.



IMPLICATION ON THE CHOICE OF WEIGHTING FUNCTION

• Typical choices of weighting function:

K1(u) = 1{–1<u<0}, K2(u) = 2√
2π

exp
(

– u
2

2
)
1{u<0},

K3(u) = 3
2 (1 – u2)1{–1<u<0}.

• All data are used for K2(u), but not for K1(u) and K3(u). G I

– Kapetanios et al. (2019, JAE), Dendramis et al. (2020, JRSSa): find
K2(u) is the best

– Farmer et al. (2023, JF): recommend to use K3(u)

• What types of weighting function shall we choose?



IMPLICATION ON THE CHOICE OF WEIGHTING FUNCTION

• (4) admits the following decomposition:

θ̂K,b,T – θ1 = –H–1
1,T(θ1)

(
S1,T︸︷︷︸

variance

+ B2,T︸︷︷︸
bias

)
,

where

H1,T(θ1) = 1
Tb

T
∑
t=1

ktT
∂2ℓt

(
θ1

)
∂θ∂θ′

, S1,T = 1
Tb

T
∑
t=1

ktT
∂ℓt(θ(t/T))

∂θ
,

B2,T = 1
Tb

T
∑
t=1

ktT
∂2ℓt(θ1)
∂θ∂θ′

(
θ1 – θ(t/T)

)
,

and θ1 lies between θ̂K,b,T and θ1.



IMPLICATION ON THE CHOICE OF WEIGHTING FUNCTION

(i) If T1/2b1/2+γ → 0, we have

Tb · RT(K, b) d−→ ϕ0,KΣ
1/2
1 Z′ωT

(
θ1

)
ZΣ1/2

1 ,

where ϕ0,K =
∫
C K

2(u)du, Z ∼ N(0, Ik) and Σ1 is defined as in Lemma
C1;

(ii) If T1/2b1/2+γ → ∞, we have

b–2γ · RT(K, b) p−→ µ2
γ,KC

′ωT
(
θ1

)
C,

where µγ,K =
∫
uγK(u)du and C = (c1, · · · , ck)′ is a collection of Hölder

constant;



IMPLICATION ON THE CHOICE OF WEIGHTING FUNCTION

(i)

(ii)

(iii) If T1/2b1/2 ≍ b–γ, we have

Tb ·
(
RT(K, b) + b2γµ2

γ,KC
′ωT

(
θ1

)
C
)

d−→ ϕ0,KΣ
1/2
1 Z′ωT

(
θ1

)
ZΣ1/2

1 ,

where µγ,K , C and ϕ0,K are defined as in (i) and (ii).



WHAT HAVE WE LEARNED?

• Reflects the usual bias-variance trade-off:
– When variance dominates T1/2b1/2+γ → 0, choose a weighting

function which has smallest ϕ0,K ;
– Otherwise, µγ,K also plays a role.

• Assume γ = 1:
– ⇒ May fall into cases (ii) and (iii), but at the slowest rate



MONTE CARLO EXPERIMENTS



SUMMARY OF THE RESULTS

• We consider DGPs used in Pesaran and Timmermann (2007, JoE) and
Inoue et al. (2017, JoE).

• Types of time variation include all considered in Example

• We find that our methods are useful: results are robust under various
types of structural change.

• Using all data and downweighting them (K2(u)) is generally preferred.



APPLICATION: BOND RETURN PREDICTABILITY



TARGET
• (log) Yield of an n-year bond:

y(n)
t = – 1

n
p(n)
t ,

where
– p(n)

t is the log price of the n-year zero-coupon bond at time t.
• Holding-period return:

r(n)
t+12 = p(n–1)

t+12 – p(n)
t .

• The excess return is
rx(n)
t+12 = r(n)

t+12 – y(1)
t ,

where
– y(1)

t is the one-year risk-free rate.



PREDICTIVE REGRESSIONS

(i) Fama-Bliss (FB) univariate

rx(n)
t+12 = α + β f s(n)

t + εt+12;

(ii) Cochrane-Piazzesi (CP) univariate

rx(n)
t+12 = α + βCPt + εt+12;

(iii) Fama-Bliss and Cochrane-Piazzesi predictors

rx(n)
t+12 = α + β1 f s

(n)
t + β2CPt + εt+12.

More details



DATA

• Bond markets:
– United States (Liu and Wu (2021, JFE))
– Canada (Bank of Canada)
– United Kingdom (Bank of England)
– Japan (Ministry of Finance Japan)

• Sample period: 1986M1 – 2022M12

• Maturity up to 5 years

• n = 2, 3, 4, 5



FORECAST EVALUATION
• Benchmark: 3 PCs from global yield curve
• Starts from 2000M1
• MSE loss:

R(K, b) = (θ̂K,b,T – θ1)′
(
XTX′T

)
(θ̂K,b,T – θ1) (10)

• Set b = cT–1/3, c ranges from 1 to 7 with a course grid of width 0.1
• b̃ = 1.06T–1/5

• Weighting functions:

K1(u) = 1{–1<u<0}, K2(u) = 2√
2π

exp
(

– u
2

2
)
1{u<0},

K3(u) = 3
2 (1 – u2)1{–1<u<0}.



RESULTS

details

• VERY PROMISING: sizable and sometimes significant improvement
over the benchmark forecasts

– particularly when K3(u) is used with optimal tuning parameter
selection

• Japan: K2(u) is better, but differences are small

• Non-local estimator ?
– Not useful, particularly for Canada



CONCLUSION



CONCLUSION

• What types of time variation are allowable for using estimator like (3)?
– A: Hölder-type continuity condition

• How to select the tuning parameter b optimally?
– A: minimizing regret risk, asymptotic optimality

• Is the weighting function K(u) = 1{–1<u<0} always the best choice?
– A: No, properties of TVP, rolling window selection outperformed
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Notes: black line: θ(t/T) = 0.9 – 1
T0.2 1(t ⩾ 0.5T + 1); blue line: θ(t/T) = 0.9 – 0.4(t/T)2; red line: θ(t/T) is

a realization from the process 1√
T
vt , where ∆vt i.i.d.

∼ (0, 1).



• θℓ,t satisfies:

|θℓ,t – θℓ,s| ⩽ ξℓ,ts
( |t – s|

T

)γ
where

– ξℓ,ts has a thin-tailed distribution:
P

(
|ξℓ,ts| > ω

)
⩽ exp

(
– c0|ω|α

)
, ω > 0, for some c0 > 0, α > 0

Return to main slide



Example
suppose that θ(t/T) is a realization of a bounded random walk process:

1√
T
vt, where ∆vt

i.i.d.
∼ N. Simple algebra gives θ(t/T) =

√
t
T

1√
t
vt. We know

that 1√
t
vt = O p(1), this implies that θ(t/T) = Ct

√
t
T , where Ct is a positive

bounded constant.

Return to main slide
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Notes: Shape of the weighting function with T = 500, b = cT–1/3 with c equal to 1,2.5 and 5.
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• The Fama-Bliss (FB) forward spreads are given by

f s(n)
t = f (n)

t – y(1)
t = p(n–1)

t – p(n)
t – y(1)

t .

• The Cochrane-Piazzesi (CP) factor is constructed as the linear
combination of forward rates:

CPt = γ̂′ f t,

where
– f t = ( y(1)

t , f (2)
t , f (3)

t , f (4)
t , f (5)

t )′;
– The coefficient vector γ̂ is estimated from a predictive regression

of 1
4 ∑

5
n=2 rx

(n)
t+12 on [1 f ′t]′.

Return to main slide



Table 1: Out-of-sample forecasting performance on bond returns: United States

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

USA - 2 years USA - 3 years

PC-yields 1.592 PC-yields 6.046

FB 1.047 1.150 1.103 0.958 0.852 FB 0.979 1.038 0.967 0.922 0.743

CP 1.113 1.122 0.949 1.005 0.744 CP 1.106 1.075 0.899 0.965 0.705

FB+CP 1.107 0.964 0.876 0.919 0.652 FB+CP 1.116 0.903 0.780 0.882 0.578∗

USA - 4 years USA - 5 years

PC-yields 11.836 PC-yields 18.670

FB 0.960 0.943 0.884 0.905 0.709 FB 0.941 0.872 0.875 0.900 0.707

CP 1.101 1.037 0.863 0.943 0.708∗ CP 1.099 1.025 0.862 0.941 0.738∗

FB+CP 1.099 0.778 0.694 0.841 0.518∗ FB+CP 1.075 0.751 0.693 0.861 0.535∗



Table 2: Out-of-sample forecasting performance on bond returns: Canada

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

Canada - 2 years Canada - 3 years

PC-yields 1.171 PC-yields 3.534

FB 1.011 0.920 0.953 0.826 0.726 FB 1.029 0.868 0.905 0.859 0.706

CP 1.051 0.888 0.908 0.809 0.744 CP 1.094 0.907 0.898 0.852 0.757

FB+CP 1.034 0.861 0.931 0.798 0.687 FB+CP 1.096 0.813 0.852 0.826 0.642

Canada - 4 years Canada - 5 years

PC-yields 6.545 PC-yields 10.133

FB 1.033 0.860 0.887 0.892 0.707 FB 1.032 0.873 0.899 0.929 0.730

CP 1.129 0.911 0.859 0.882 0.758 CP 1.165 0.931 0.864 0.914 0.781

FB+CP 1.137 0.822 0.847 0.861 0.661 FB+CP 1.149 0.843 0.867 0.895 0.682



Table 3: Out-of-sample forecasting performance on bond returns: UK

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

UK - 2 years UK - 3 years

PC-yields 1.415 PC-yields 4.378

FB 0.807 0.821 0.907 0.790 0.648 FB 0.897 0.897 1.057 0.866 0.769

CP 0.923 0.764 0.704 0.646 0.593 CP 1.041 0.839 0.769 0.729 0.650

FB+CP 0.921 0.688 0.669 0.645 0.514 FB+CP 1.050 0.751 0.745 0.724 0.591

UK - 4 years UK - 5 years

PC-yields 8.224 PC-yields 12.962

FB 0.949 0.942 1.042 0.897 0.884 FB 0.980 0.983 1.028 0.923 0.936

CP 1.087 0.884 0.811 0.782 0.691∗ CP 1.097 0.916 0.850 0.813 0.727

FB+CP 1.092 0.797 0.780 0.770 0.638 FB+CP 1.075 0.835 0.811 0.789 0.669



Table 4: Out-of-sample forecasting performance on bond returns: Japan

Non-local R = 60 Opt-R Opt-G Opt-E Non-local R = 60 Opt-R Opt-G Opt-E

Japan - 2 years Japan - 3 years

PC-yields 0.333 PC-yields 1.146

FB 0.222 0.105∗ 0.115∗ 0.099∗ 0.097∗ FB 0.244 0.148∗ 0.167∗ 0.145∗ 0.150∗

CP 0.582 0.102∗ 0.112∗ 0.093∗ 0.098∗ CP 0.677 0.155∗ 0.164∗ 0.140∗ 0.144∗

FB+CP 0.610 0.101∗ 0.134∗ 0.091∗ 0.094∗ FB+CP 0.679 0.149∗ 0.179∗ 0.140∗ 0.141∗

Japan - 4 years Japan - 5 years

PC-yields 2.517 PC-yields 4.050

FB 0.246 0.197∗ 0.186∗ 0.186∗ 0.165∗ FB 0.291 0.267∗ 0.243∗ 0.247∗ 0.219∗

CP 0.817 0.181∗ 0.182∗ 0.162∗ 0.160∗ CP 0.902 0.220∗ 0.223∗ 0.196∗ 0.190∗

FB+CP 0.772 0.186∗ 0.189∗ 0.162∗ 0.168∗ FB+CP 0.871 0.182∗ 0.187∗ 0.167∗ 0.169∗

Return to main slide


